전도성 활성탄소와 폴리비닐리덴플로라이드(PVDF)를 이용하여 제조된 탄소막을 이용하여 폐수의 Total dissolved Solid (TDS)를 제거할 수 있는 탄소막 시스템을 제조하였다. 100 ppm의 NaCl, Na2SO4, MgCl2, MgSO4수용액을 이용하여 탄소막의 기본 특성을 알아보았으며, (주)경인양행의 실제폐수인 염료폐수로부터 TDS를 제거하는 실험을 위하여 가로 × 세로가 각각 20cm인 탄소막 240장으로 구성된 Pilot 규모의 탄소막 시스템을 구성하였다. 원폐수를 초순수로 적절히 희석하여 제조된 6가지의 TDS (941, 2050, 2810, 3830, 4960, 6030 ppm)를 지닌 실제폐수를 이용하여 제조된 Pilot규모의 탄소막 시스템의 TDS 제거성능을 알아보았으며, 여러 운전조건에 따른 탄소막 시스템의 분리특성을 알아보았다.
폴리스티렌-블록-폴리히드록에틸 메타크릴레이트(PS-b-PHEMA), 술포석시닉산(SA), 인텅스텐산(PWA)으로 구성된 수소 이온 전도성 나노복합 고분자 전해질막을 제조하였다. 폴리히드록에틸 메타크릴레이트(PHEMA) 블록의 히드록실그룹(-OH)와 술포석시닉산(SA)의 -COOH 그룹과의 에스테르 반응에 의하여 전해질막을 가교시켰다. 폴리헤테로산(PWA)을 도입했을 때, SO3 - 그룹의 신축 밴드가 1187 cm -1에서 1158 cm -1로 낮아졌으며, 이는 PWA 입자가 전해질막의 술폰산 그룹과 상호작용함을 나타낸다. PWA 함량이 30wt%가 되었을 때, 상온 전도도는 0.045에서 0.062S/cm로 증가되었으며, 이는 PWA 입자의 고유 전도도 특성과 전해질막의 술폰산기의 산도가 증가했기 때문이다. 또한 30wt%를 함유한 복합 전해질막은 100℃에서는 최대 0.126 S/cm의 수소 이온 전도도를 나타내었다 PWA가 첨가됨에 따라 복합 전해질막의 열적특성 또한 증가하였다.
조직공학용 생체 물질로 사용하고자 가교제 1,3-butadiene diepoxide (BD)를 사용하여 락타이드와 가교시킨 히아루론산 막을 제조하였다. 막의 락타이드 및 BD 반응도는 핵자기 공명 분광볍으로 결정하였다. BD 농도가 높을 경우 6%이하의 성장저해 현상이 나타났으나 그 값은 세포 성장에 문제되지 않을 정도로 충분히 낮았다. 가교온도가 낮을수록 탄성 율은 증가하고 팽윤도는 감소하였다. 막의 생분해속도는 가교온도가 낮을수록 감소하였다. 약물방출 실험 결과 가교 온도가 낮을수록 막을 통한 약물 투과는 감소하였다.
폴리비닐리덴플로라이드(PVDF) 지지체 위에 빗살모양의 술폰화된 공중합체를 코팅하여 나노 분리막을 제조하였다. 빗살모양의 공중합체는 원자전달 라디칼 중합법(ATRP)에 의해 제조하였으며, 폴리비닐클로라이드의 주사슬과 폴리스티렌 술폰산(PSSA)의 곁사슬로 구성되어 있다. 핵자기 공명법(1 H-NMR), FT-IR분광학 그리고 WAXS 분석법에 의해 공중합체가 성공적으로 합성되었음을 확인하였다 PVC-g-PSSA로 구성된 복합 나노 분리막은 PSSA의 함량이 증가함에 따라 플럭스와 배제율 모두 증가하였다. 이러한 성능 향상은 분리막의 술폰산의 함량의 증가로써 설명할 수 있다. PSSA가 71wt%첨가된 나노 복합막의 배제율은 Na2SO4 88%, NaCl 33%을 나타내었고, 플럭스는 Na2SO4 26, NaCl 34 L/m 2 h을 각각 나타내었다.
지하수나 폐수 등에 포함된 독성을 가진 음이온류나 양이온류 등의 유독물질을 경제적으로 처리하는데 탁월한 분리기능을 가진 것으로 알려진 전기투석공정에 사용하기 위해 음이온 교환 복합막을 제조하여 그 전기화학적인 특성을 조사하였다. 다양한 조성의 vinylbenzylchloride (VBC)와 divinylbenzene (DVB) 그리고 α,α-azobis(isobutyronitrile) (AIBN)으로 이루어진 단량체 용액에 다공성 지지체인 poly(ethylene) (PE)을 함침한 후 열중합 가교시켜 poly(VBC-DVB)/PE 복합막을 생성한 다음 trimethylamine(TMA)과 acetone을 이용해 음이온 교환기(-N + (CH3)3)를 함유하는 복합막을 제조하였다. 음이온 교환막 제조시 VBC/DVB의 비율과 TMA/Acetone의 비율에 따른 막의 함수율, 이온교환용량(IEC) 및 전기저항을 조사하였다. 그 결과 제조된 막들은 사용된 PE지지체의 얇은 막두께에 기인하여 아스톰사의 상용화 음이온 교환막(AMX)보다 높은 IEC와 낮은 전기저항 및 낮은 함수율 등을 나타내는 것을 확인할 수 있었다. 본 실험에서 제조된 복합막은 저렴한 제조비용과 우수한 전기화학적 특성으로 정수 및 폐수처리를 위한 전기투석공정에 충분히 적용될 수 있음을 알 수 있었다.
본 연구에서는 높은 투과도를 갖는 고분자량의 PTMSP를 합성하고 PTMSP와 hydroxy-terminated PDMS로부터 PTMSP-PDMS graft copolymer를 합성하였다. 그리고 PTMSP-PDMS graft copolymer에 TEOS의 함량을 15, 30, 50 wt%로 달리하여 졸-겔 방법에 의해 PTMSP-PDMS-silica 복합물을 제조하였다. PTMSP-PDMS-silica/PEI 복합막의 물리화학적 특성은 1H-NMR, FT-IR, TGA, XPS, GPC, SEM 등을 사용하여 조사하였고, H2, O2, N2, CO2, CH4, n-C4H10 기체에 대한 기체 투과도와 선택도 성질을 고찰하였다. 복합막의 투과도는 TEOS의 함량과 압력이 증가함에 따라 증가하였다. 그리고 기체들의 선택도는 TEOS 함량 30wt%에서 최대값을 나타내고 그 이상에서는 감소하는 경향을 나타내었다.
수돗물 공급에 있어서의 미량 유기물질 및 맛냄새 제거의 중요도가 높아짐에 따라 오존, GAC 및 PAC 등 고도 정수처리공정의 도입이 지속적으로 증대되고 있다. 하지만, 원수의 수질악화, 새로운 오염물질의 출현 등에 의해 기존의 고도처리공정이 향후에도 충분한 대안이 된다고 확신하기는 어려운 실정이다. 본 연구에서는 고농도의 분말활성탄을 slurry blanket의 형태로 체류시킨다는 새로운 개념의 접촉조를 구상, 막여과조와 연계하여 하나의 공정으로 완성하였다. 한강원수를 대상으로 80m3/일 규모의 pilot plant를 이용, 유기물질 및 2-MIB, Geosmin에 대한 제거특성을 살펴본 결과 DOC의 경우 운영초기 90% 이상, 안정화된 이후에도 70~80% 내외의 높은 처리효율을 나타내었으며 2-MIB Geosmin의 경우 검출한계 이하로 제거되었다. 본 공정은 1년 이상의 장기간의 고도처리 효율 검증 및 안정된 PAC 접촉조의 운영방안 등 공정 최적화를 위한 추가적인 연구가 필요한 실정이나 기존의 고도처리에 비해 컴팩트하면서 높은 처리효율을 안정적으로 나타냄으로써 맛냄새물질을 비롯한 미량 오염물질을 제거하기 위한 대안공정으로서의 높은 가능성을 확인하였다.
본 연구에서는 평판 지지층 위에 부착된 플라스틱 돌기에 의하여 형성되는 와류가 투과성능에 미치는 영향을 측정하기 위하여 돌기 있는 모듈과 돌기 없는 모듈에서 각각 투과 실험하였다. 운전압력을 0.4 bar에서 1.6 bar까지 증가시키면서 카올린 용액을 투과시킬 경우, 돌기형 평막 모듈은 돌기가 없는 모듈과 비교하여 초기 투과유속 감소 시간이 2배 이상 연장되었고 순수 대비 투과유속의 감소비 역시 1 내지 5% 가량 낮게 나타났다. 레이놀즈수가 1,750인 층류영역에서 돌기에 의한 투과유속 향상은 전이영역에 비하여 약 2배 높게 나타났다. 전반적으로 평막 모듈에 부착된 돌기는 60분 후 투과유속 향상에는 크게 기여하지 못하였지만, 투과실험 초기에는 막오염 방지에 효과적인 것으로 확인되었다.
본 연구에서 졸-겔 방법에 의하여 나노 기공을 가지는 세라믹막을 제조하여 단일 조성의 헬륨과 질소를 가지고 기체투과 실험을 수행하였다. 기공 크기 0.1 μm, 기공율 32%의 평막형 α-Al2O3 지지체를 제조하였으며, 지지체를 담지하여 코팅하는 방법으로 4nm의 기공 크기를 가지는 γ-Al2O3 중간층을 제조하였다. 실리카 졸은 TEOS의 산 촉매 가수분해와 축중합반응을 통하여 합성하였다. 막은 딥코팅과 소결과정을 거쳐 제조되었다. 졸-겔 법에 의해 합성된 세라믹 막을 통한 헬륨, 질소 투과 실험은 기체의 투과 특성을 파악하기 위하여 시행하였다. 질소에 대한 헬륨의 선택도는 100∼160 정도였으며 헬륨의 투과도는 303∼363 K의 온도 범위에서 10 -7 mol/m 2 ⋅s⋅Pa 정도였다.
선행 연구에서 poly(styrene sulfonate) (PSS)/poly(diallyldimethylammonium chloride) (PDADMAC) 나노 여과막을 사용하여 불소 이온을 포함한 1가 이온 혼합물을 분리하는 것이 가능함을 보였다. 예를 들면, 다공성 알루미나 지지체에 (PSS/PDADMAC)4PSS 필름을 코팅한 경우 염소/불소 이온의 선택도가 3 이상이었으며 4.8 bar에서 용액의 플럭스가 3.5 m 3 /m 2-day이었다. 그러나, PSS/PDADMAC 이층의 수가 4.5에서 5.5.로 증가하면 염소/불소 이온의 선택도가 1.9로 떨어졌으며, (PSS/PDADMAC)6PSS 필름의 경우에는 염소 이온의 배제율이 급속히 증가하면서 선택도가 1에 가까웠다. 이러한 선택도의 감소 현상은 예상치 못한 것으로서 다른 지지체를 사용하여도 같은 경향을 보이는지 여부는 불분명하였다. 따라서, 본 연구에서는 다공성 알루미나 대신에 분획 분자량이 50kDa인 다공성 polyethersulfone (PES)에 PSS/PDADMAC을 적층하고 불소/염소 이온 혼합물의 나노 여과 특성을 살펴보았다. 그 결과 다공성 알루미나의 경우와 비록 적층 수는 달랐으나 불소 이온의 배제율이 최대가 되는 최적 적층수가 존재하였으며 이로부터 이러한 현상이 지지체에 무관한 일반적인 사실임을 알 수 있었다.