휴대용 정보 통신기기의 소형 경량화에 적합한 고용량 전지인 리튬이온 이차전지에 응용되는 미세다공성 고분자 격리막에 관한 특성을 검토하였다. 격리막으로서 요구되어지는 항목은 전지 성능에도 관련되며, 안전에도 관련된 것들 이어서, 전지의 부재로서 상당히 중요한 부분을 차지하고 있다. 철재는 폴리에틸렌(PE) 등과 같은 폴리올레핀 소재를 연신하여 제조한 미세다공성 격리막이 주로 채용되고 있으며, 다양한 shut-down온도에 적용 가능하고, wettability가 향상된 미세다공성 격리막으로서, 불소계 고분자의 적용 및 폴리올레핀계 소재의 표면개질 등에 관한 연구가 지속되고 있다.
토양 유기물에서 생물학적 난분해성인 부식물질을 알카리에서 추출하고 산성영역에서 침전되는 성분인 부식산을 정제, 추출하였다. 부식산의 주성분인 카르복실기가 이온교환 능력을 가지고 있는 것을 이용하여 PVA와의 불균질한 이온교환막을 제조하여 생리활성 이온인 K+, Na+의 이동 및 이동속도를 검토하여 보았다. 그 결과 수소이온 농도가 높을수록 이동속도는 빠르게 나타나고, 특히 10-1,100영역에서 급격한 변화를 보였다. 또한 K+, Na+의 농도가 증가함에 따라 그 선택성이 나타났으며, 특히 수소이온농도 100 일때는K+이 2배정도 빠르게 이동되고 있다. 따라서 이러한 생리활성 이온의 선택성 및 이동속도의 향상으로 부식산이 이온교환막의 새로운 재료로서의 그 가능성을 나타내었다.
비대칭형 막기공을 통한 뉴톤 유체의 발산흐름(diverging flow)에 대한 심도있는 해석 결과를 제시하였다. 막기공 모델의 일반적 형태인 슬릿(slit)과 원뿔(cone)형 채널에 대해 미동흐름(creeping flow)을 적용하여 유속분포 관계식을 구하였다. 유속분포의 고찰로부터 발산각도 αlongrightarrow0 인 경우는 윤활근사법(lubrication approximation)이 적용되어 Poiseuille 흐름으로 되는 것을 확인하였고, 발산각도가 증가할수록 벽면부근에서의 유속분포는 결핍(depletion)됨과 아울러 전체유속은 감소하였다. 구해진 속도분포와 압력분포의 관계식으로부터 투과유량에 대한 이론식을 도출하였다. 예측된 결과는 기공의 비대칭성이 증가할수록 그에 따른 투과유량은 점차 증가하는 거동을 보였다. 본 연구의 이론결과는 궁극적으로 막여과에의 응용 측면과 밀접하게 연관되어 있다.
입자의 정밀여과에 있어 임계플럭스의 이론치를 계산하기 위해 확산(diffusion), 횡방향이동(lateral migration), 전단유도확산(shear induced diffusion), 그리고 입자의 정전기적 반발력에서 기인하는 상호작용에 의한 상승이동(interation enhanced migration) 등의 입자의 역전달 이동을 고려하였다. 보통의 여과조건에서 제타전위의 절대치가 20~40mV이고 직경이 0.1μm~10μm인 입자의 경우 상호작용에 의한 이동이 가장 중요한 역전달 메카니즘이었다. 입자크기에 따라 계산된 임계플럭스값을 실험적으로 확인하기 위해 다양한 크기를 갖는 구형인 적철광(hematite)입자를 합성하여 여과실험을 수행하였다. 이 실험치는 역전달 이론에 의해 예측된 플럭스의 이론치와 비교적 잘 일치하였다.