기존의 올레핀 운반체로 알려진 은 나노입자는 입자 표면에서 프로필렌 기체와 상호작용을 하여 올레핀 촉진수송 이 이루어진다고 알려졌다. 그러나 은 나노입자가 공기 중에 쉽게 산화되어 표면에 생성된 산화은(AgO 또는 Ag2O)의 효과일 것으로 예상되었다. 산화은의 효과를 규명하기 위해, 고분자 PVP에 AgO 또는 Ag2O를 5 wt%로 넣고 분산시킨 후 전자수용 체 TCNQ 또는 p-BQ를 0.005~0.02%까지 넣어 분리막을 제조하였다. 전자수용체가 첨가되면 산화은의 표면에 양극성화도 분산 정도가 향상될 것으로 기대하였고, 이는 기체투과 성능과 XPS 그리고 TEM에 의해 분리막의 특성이 확인되었다.
본 연구에서는 MBR 내에 침지된 분리막 오염을 평가하기 위하여 운전시간에 따른 막간차압(TMP)을 측정하였 다. 유효 막면적이 0.02 m2이고 공칭 세공크기가 0.15 μm인 정밀여과용 평막 모듈을 MLSS 5,000 mg/L인 활성슬러지 용액 에 침지시켰다. 운전/휴직(R/S) 및 사인파형 투과유속 연속운전(SFCO) 방식에 따른 TMP를 비교하기 위하여 동시에 투과 실 험을 수행하였다. SFCO 운전방법에 따른 TMP는 R/S에 비하여 최대 93% 낮게 유지되었으며 투과유속이 증가함에 따라서 TMP 감소 효과는 줄어들었다. 또한 응집제인 FeCl3를 활성슬러지 용액에 500 mg/L 농도로 주입시키면 SCFO 운전방식의 경우, 투과 운전시간을 5배 이상 증가시켜도 한계 운전 TMP인 55 kPa의 40% 미만으로 유지됨을 확인할 수 있었다.
본 연구에서는 기공의 크기가 큰 다공성 지지체를 3~4 μm, 150 nm의 크기를 갖는 α-알루미나 입자를 물과 실 리카-지르코니아 용액에 각각 분산시키는 방법으로 표면 개질을 하였다. 3~4 μm 크기의 알루미나 입자가 분산된 용액을 이 용하여 금속 지지체 및 알루미나 지지체에 코팅하였을 때, 코팅횟수가 증가할수록 지지체의 표면의 큰 기공이 감소하였고, 여 기에 150 nm 크기의 알루미나 입자가 분산된 용액으로 추가 코팅을 하면 작은 크기의 알루미나 입자가 기공 사이사이에 들 어가면서 지지체를 좀 더 매끄럽게 개질하는 역할을 하는 것을 확인하였다. 특히 실리카-지르코니아 용액을 분산매로 하여 표면 개질을 한 경우, 알루미나 입자가 실리카-지르코니아 층에 촘촘하게 박힌 모양으로 고정이 되어 지지체 개질에 효과적 임을 확인하였다. 이러한 방법으로 제조된 실리카-지르코니아 분리막의 기체투과도는 상온에서 각각 1.8 - 8.4 × 10-4 mol⋅m-2 ⋅s-1⋅Pa-1, 3.3 - 5.0 × 10-5 mol⋅m-2⋅s-1⋅Pa-1이며 수소/질소 선택도는 Knudsen 분포를 보였다. 표면 개질된 지지체에 다양 한 분리층을 형성하는 방법으로 무기 분리막 응용에 이용할 수 있을 것으로 예상된다.
PEBAX[poly(ether-block-amide)]-NaY zeolite 복합막에 대한 H2, N, CO2, CH4의 투과도와 선택도에 대하여 연 구하였다. PEBAX-NaY zeolite 복합막에 대한 H2, N2, CO2, CH4 투과도는 막 내의 NaY zeolite 함량이 증가할수록 H2의 투 과도는 증가하였고, N2, CO2, CH4의 투과도는 감소하는 경향을 나타내었다. PEBAX-NaY zeolite 복합막 내의 NaY zeolite 함량이 증가함에 따라 N2에 대한 H2와 CO2의 선택도, CO2에 대한 H2의 선택도, 그리고 CH4에 대한 기체 선택도는 증가하였 고, 그외의 H2, N2, CO2에 대한 기체(H2, N2, CO2, CH4)의 선택도는 감소하였다. 그리고 각 기체들에 대한 가장 높은 선택도 는 CO2인 경우에 얻어졌고, H2, N2, CH4에 대한 CO2의 선택도 값은 12~156이었다.
용매 비용매 치환 상전이 공정과 증기 유도 상전이 공정을 결합하여 성능이 향상된 폴리술폰 정밀역과막을 제조 하였다. 본 연구에서 제조된 비대칭막은 폴리술폰(고분자), 디메틸 포름아미드(용매), 폴리비닐리돈(친수성 고분자 첨가제), 폴 리에틸렌글리콜(극성 고분자 액상 첨가제)로 이루어진 혼합 용액에 디메틸술폭사이드(극성 아프로틱 비용매), 물(극성 프로틱 비용매 첨가제)을 첨가하여 제막용 캐스팅 용액을 물과 이소프로판올 혼합용액에 침지하여 얻었다. 극성 아프로틱 비용매와 극성 프로틱 비용매의 첨가는 멤브레인의 구조를 제어하는데 유용한 방법이며 이를 습윤 공기를 캐스팅 용액에 노출시켜 준 응고상태를 만들어줌으로써 멤브레인의 내부 구조를 제어하고자 하였다. 또한 응고조의 조성을 물/이소프로판올의 혼합비를 통하여 조절하였다. 순수 투과도, 기공 크기 분포도, 표면 친수도 및 구조 분석이 이루어졌으며, 그 결과 평균 기공의 크기를 거의 0.2 μm 정도 향상시키는 효과를 가져왔으며 수 투과 유량 또한 1000-1800 LMH 정도 향상시키는 결과를 나타내었다.
PEBAX[poly(ether-block-amide)]에 NaY zeolite를 첨가하여 PEBAX-NaY zeolite 복합막을 제조하고 제조한 복합 막에 대한 C3H6와 C3H8의 투과도와 선택도(C3H6/C3H8)에 대하여 조사하였다. SEM관찰에 의하면 PEBAX-NaY zeolite 복합 막 내에 NaY zeolite는 0.5∼2.5 μm의 덩어리 상태로 분산되어 있었다. TGA측정에 의하면 PEBAX에 NaY zeolite가 첨가되 면 첨가된 NaY zeolite 양만큼의 질량 변화를 알 수 있었다. 기체투과 실험에 의하면 PEBAX-NaY zeolite 복합막 내의 NaY zeolite함량이 증가할수록 C3H6와 C3H8의 투과도는 감소하였고, C3H6의 투과도는 C3H8의 투과도보다는 크게 나타났으며, 기 체선택도(C3H6/C3H8)는 감소하는 경향을 나타내었다.
순수용매와 혼합용매를 사용한 상전이를 통하여 poly(L-lactic acid) (PLLA) 스캐폴드 막을 제조하였다. 순수용매로서 chloroform과 1,4-dioxane을 사용하였으며, 이들 순수용매를 혼합하여 혼합용매를 제조하였다. 스캐폴드 막의 모폴로지, 기계적 특성 그리고, 물질전달 특성을 각각 SEM, 인장강도실험 및 당 확산실험을 통하여 측정, 평가하였다. 순수 chloroform 용매를 사 용한 용액으로부터는 격벽-공극 구조(solid-wall pore structure)의 스캐폴드 막이 제조되었다. 반면, 순수 1,4-dioxane 용매를 사용 한 용액으로부터는 나노섬유 구조의 스캐폴드 막이 제조되었다. 혼합용매의 경우 용매 내의 조성이 변화하면서 다양한 구조의 스 캐폴드 막이 제조되었다. 혼합용매 내 1,4-dioxane 함량이 20% 이하인 경우에는 격벽-공극 구조의 스캐폴드 막이 제조되었으며, 1,4-dioxane 함량이 20%인 경우에는 최대직경 100 μm의 거대공극을 갖는 구조를 보였다. 1,4-dioxane 함량이 25% 이상인 구간 에서는 나노섬유 구조의 스캐폴드 막이 제조되었다. 이 구간에서는 혼합용매 내 1,4 dioxane 함량이 변화함에 따라 나노섬유의 직경이 함께 변화하였다. 나노섬유의 최소직경은 15 nm 가량이었으며, 혼합용매 내의 1,4-dioxane 함량이 80 wt%일 때에 얻어졌 다. 이상의 결과를 통하여 용매의 조성은 스캐폴드 막의 구조를 결정짓는 중요한 요소가 된다는 결론을 얻을 수 있었다.
다공성 전극표면에 이온교환고분자를 직접 casting하여 만들어진 복합탄소전극의 성능을 알아보기 위해서 NaCl 수용액을 이용하여 흡착시간, 공급액 농도, 유속, 탈착전압에 따라 흡/탈착실험을 진행하였다. 유입수가 100 mg/L일 때 동일 조건에서 흡착시간이 3분에서 5분으로 증가하면서 제거율이 3% 증가하였는데 이는 유입수의 셀 내부 잔류시간의 증가로 인 한 것으로 사료되며 또한 유속이 15 mL/min에서 23 mL/min 증가하면서 효율이 12% 정도 낮음을 보인 것은 유속이 상승하 면서 유입수의 셀 내부 잔류시간이 짧아지면서 나타나는 영향으로 사료된다. 유입수의 농도를 200 mg/L로 증가하였을 때 효 율은 100 mg/L보다 10~15% 정도 낮은 값을 보였는데, 이는 탈착구간에서 완전탈착이 되지 않아 나타나는 것으로 판단된다.
본 연구에서는 dimethylformamide (DMF)와 acetone의 혼합용액에 산화그래핀(graphene oxide, GO)을 분산시키고 기질 고분자인 PVdF (polyvinylidene fluoride)를 도입하여 전기방사법으로 나노섬유를 제조하였다. 또한 PVdF/GO 복합 나노 섬유를 평막 형태로 적층시켜 기공크기 0.4 μm인 정밀여과막을 제조하였다. 그리고 GO의 고유한 항균 특성으로 생물학적 오염을 줄일 수 있는 PVdF/GO 복합막의 막오염을 평가하기 위하여 막간 압력차(transmembrane pressure, TMP)를 측정하였 다. 유효 막면적이 0.01 m2인 PVdF/GO 평막과 상용화된 MBR용 CPVC (chlorinated polyvinyl chloride) 평막을 MLSS 4,500 mg/L인 활성슬러지 수용액 내에서 동시에 투과 실험하였다. 공기를 주입하지 않을 경우, 투과유속이 10 L/m2⋅h일 때 PVdF/GO 막의 TMP는 CPVC 막의 최대 79%까지 감소하였다. 또한 운전/휴직 방식으로 운전할 경우, 10 L/m2⋅h일 때 PVdF/GO 막의 TMP는 CPVC 막의 최대 69%까지 감소함을 확인하였다.
본 연구에서는 우리 주위에서 흔히 채취할 수 있는 식물을 이용하여 엽록체를 추출하고, 이를 다양한 방법으로 PP부직포 위에 도포하여 복합막을 제작하였으며, 산소 발생여부에 대한 연구를 진행하였다. 제조된 엽록체의 도입 방법에 따 른 실험에서, 딥(dipping) 코팅법과 스프레이(spraying) 코팅법을 이용하였으며, 밀폐된 용기와 진공오븐 내 초를 이용한 연소 시험 모두에서 스프레이 코팅이 비교적 우수한 결과를 나타내었다. 또한, 엽록체의 활성을 증가시키기 위해 nylon6/6 나노섬 유를 PP부직포 위에 전기방사하여 복합지지체를 제조한 후, 엽록체를 도입하여 제조한 샘플의 경우, 나노섬유가 도입되지 않 은 샘플에 비해 낮은 활성을 가진다는 것을 확인하였다. TiO2가 포함된 샘플들의 경우, 포함되지 않은 샘플들에 비해 엽록체 함량이 50%가 도입되었지만, 16%에서 21%까지 도달되는 시간과 초를 이용한 연소실험에서 각각 유사한 결과값을 나타내었 다. 따라서 본 연구에서 도입된 스프레이 코팅법과 TiO2 접목은 산소발생용 분리막 및 공기청정기용 필터소재로의 응용에 대 한 기초연구 자료로 활용할 수 있을 것으로 기대된다.