친환경화소재 음이온 교환막을 제조하기 위하여 수용성 PVA에 (Formylmethyl) triphenyl-phosponium chloride의 모노머를 아세틸화 반응에 의해 고정시켰다. 제조한 막의 특성을 분석하기 위해 FTIR, TGA. SEM등의 기기분석장치 및 물리 화학적 기본 특성인 IEC, Transport number, MER등을 조사하였고 이에 대한 거동을 보고하고자한다.
Pb를 흡착처리하기 위해 자외선 유도 그라프트 중합을 사용하여 박테리아 셀룰로스에 아크릴산을 모디피케이션한 흡착제를 제조하였다. 제조된 흡착제는 SEM, FTIRATR등의 기기분석에 의해 평가되었고, 흡착실험 결과를 흡착속도의 거동을 고찰하기 위한 방법으로 pseudo-first-order로 언급되어지는 Benaissa 모델과 pseudo- second-order로 언급되어 지는 Kurniawan 모델에 적용하였다. 제조된 흡착제는 Benaissa 모델에 보다 더 일치함을 보여주었다.
상용화되고 있는 이온교환막의 경우 제조공정은 PVC를 분말을 paste로하여 PVC천에 함침시켜 제조하고 있다. 이러한 제조공정은 공정상의 어려움 및 제조 원가의 상승의 요인으로 지적되어 왔고, 이에 최근 PVC 비다공성 필름 지지체 가 특정 모노머에 팽윤하는 성질을 이용하여 함침 시키는 기술이 소개되고 있다. 그러나 이 또한 이온교환기를 도입하기 위해서는 슬폰화반응 및 4급 아민화 반응이 수반되어져야만 한다. 본 연구에서는 이런 이온교환기의 도입공정을 보다 단순화시키기 위한 방안의 제안 및 기초실험과정을 보고하고자 한다.
에폭시 수지는 기계적 물성, 내약품성, 치수 안정성 등이 우수하기 때문에 고기능 소재로서 수요가 증가하고 있다. 이에 따라 에폭시 수지 제조공정에서 발생하는 부산물의 양도 증가하여 부산물 내의 원료 물질 회수에 대한 관심이 높아지고 있다. 본 연구에서는 원료물질을 회수하는 증류/분리막 복합 공정에 적용할 수 있는 탈수용 복합막을 연구하였다. 실리카-지르코니아 졸에 α-알루미나를 분산시킨 코팅용액과 실리카 졸을 이용하여 Dip-coating법으로 실리카 복합막을 제조하였다. 에폭시 공정 부산물인 Epichlorohydrin/IPA/H2O을 이용하여 투과증발 실험한 결과 복합막은 총투과도 0.1∼0.7 kg/m²⋅h, 물의 선택도 50∼110를 나타내었다.
Quaternary amonium salts are used as anion-exchange and also easily decomposed due to their intrinsic structural instability. These drawbacks have limited the long-term utilization of the membranes. The objectives of this study are to synthesize high performance anion-exchange membranes and to investigate their electrochemical properties The new membranes were prepared via a monomer sorption method. Their morphological and electrochemical properties have been investigated through various analyses. While the accumulated water-splitting flux of the commercial membrane containing conventional quaternary ammonium groups was shown to largely increase with time, theirs of the new membrane was shown without significant change.
음이온 교환막의 치환체 특성을 파악하기 위하여 탄화수소의 분자구조가 다른 세 종류의 음이온 교환기를 vinyl benzyl chloride (VBC) base 막에 도입하였다. 지방족계로 trimethylamine (TMA), 고리형계로 N-methylpiperidine (MP), 방향족계로 pyridine (Py)은 아민화 반응을 통하여 도입되었다. 각각의 반응속도는 막저항(MER)과 이온교환능력(IEC) 변화의 관측으로부터 Py < MP < TMA의 순서로 반응하고 있음을 보여주었다. 한편 SEM image에서는 Py 치환체 막이 가장 균일하고 치밀한 구조를 보여주었으며, 전기화학적 특성에서도 Py이 상용막(AMX)과 비슷한 막저항(5.0 Ω·cm2 >, in 0.5 mol/L NaCl)을 나타내었다. 이 모든 결과로부터 치환체의 공명구조는 균질한 이온교환막의 제조에 기여하고 있음을 알 수 있었다.
본 연구에서는 기공의 크기가 큰 다공성 지지체를 3~4 μm, 150 nm의 크기를 갖는 α-알루미나 입자를 물과 실 리카-지르코니아 용액에 각각 분산시키는 방법으로 표면 개질을 하였다. 3~4 μm 크기의 알루미나 입자가 분산된 용액을 이 용하여 금속 지지체 및 알루미나 지지체에 코팅하였을 때, 코팅횟수가 증가할수록 지지체의 표면의 큰 기공이 감소하였고, 여 기에 150 nm 크기의 알루미나 입자가 분산된 용액으로 추가 코팅을 하면 작은 크기의 알루미나 입자가 기공 사이사이에 들 어가면서 지지체를 좀 더 매끄럽게 개질하는 역할을 하는 것을 확인하였다. 특히 실리카-지르코니아 용액을 분산매로 하여 표면 개질을 한 경우, 알루미나 입자가 실리카-지르코니아 층에 촘촘하게 박힌 모양으로 고정이 되어 지지체 개질에 효과적 임을 확인하였다. 이러한 방법으로 제조된 실리카-지르코니아 분리막의 기체투과도는 상온에서 각각 1.8 - 8.4 × 10-4 mol⋅m-2 ⋅s-1⋅Pa-1, 3.3 - 5.0 × 10-5 mol⋅m-2⋅s-1⋅Pa-1이며 수소/질소 선택도는 Knudsen 분포를 보였다. 표면 개질된 지지체에 다양 한 분리층을 형성하는 방법으로 무기 분리막 응용에 이용할 수 있을 것으로 예상된다.
본 연구에서 고투과도를 갖는 실리카 분리막은 콜로이달 실리카 졸과 고분자형 실리카 졸 두 가지를 DRFF법과SRFF법으로 다공성 금속 지지체 위에 코팅하여 제조되었다. 실리카 졸은 졸-겔법으로 테트라에톡시실란(TEOS)에 의하여 제조되었고, 각각의 졸은 동적광산란법(DLS), 전계방사 주사전자현미경(FE-SEM), 질소 흡착법 등을 이용하여 그 특성을 평가하였다. 다공성 금속 지지체위에 콜로이달 실리카 졸로 중간층을 형성하여 치밀한 구조의 실리카 층을 형성한 후 그 위에 분리층으로 고분자형 실리카 졸을 코팅하여 핀홀을 줄이는 방법으로 기체분리용 분리막을 제조하였다. FE-SEM으로 분리막의코팅 층을 분석한 결과 분리층은 중간층보다 침밀한 구조를 가지고 있음을 확인하였고 기체투과 결과 수소 투과도 (6.63-9.21) × 10-5 mol⋅m-2⋅s-1⋅Pa-1 분포를 보였다.
내열성, 용매 저항성의 특징을 갖는 다공성 세라믹 소재를 이용한 무기 멤브레인이 기체분리(수소 분리, 이산화탄소 분리 등), 액체 분리(수처리, 폐수처리, 유기용매 분리 등) 등 여러 가지 분야로 그 응용이 확대되고 있다. 본 논문에서는 다공성 세라믹 멤브레인의 소재, 제조 방법에 따른 멤브레인의 구조 제어 및 성능 평가에 관한 연구를 소개하고, 멤브레인의 세공 크기에 따른 구조, 멤브레인의 특성을 이용한 여러 가지 기체 분리 및 액체 분리에 관한 연구 동향을 정리하였다.
본 연구에서는 소수성 표면의 막을 친수화시키는 방법으로 기존의 방법(브렌딩, 화학적처리 및 post-irradiation에 의한 광조사법)의 단점을 극복하기 위해 주고분자에 전자빔을 전조사하는 방법을 제안하였다. 본 연구 제조공정은 4부분으로 구성되며 첫째로 주고분자를 전자빔을 이용하여 수증기 및 공기조건하에서 전조사함으로써 친수기를 도입하는 전구체의 제조공정, 이를 이용하여 도프을 제조하는 도프용액 제조공정, 도프용액을 부직포 위에 캐스팅 하는 캐스팅 공정, 마지막으로 비용매에 침적하여 응고시켜 분리막을 형성시키는 분리막 제조공정으로 이루어진다. 이렇게 제조된 분리막은 기존의 친수화 방법을 통하여 얻어진 다공 분리막에 비하여 보다 균일한 형태의 친수화가 가능하며, 제조공정의 단순화를 꾀할 수 있다는 장점을 가지고 있다. 이를 수행하기 위해 소수성 고분자인 polyvinylidene f1uoride (PVDF)를 75~125 K Gray 범위 선량의 전자빔 (electron beam, EB) 조사하여 전구체를 제조하였다. 제조된 전구체는 FTIR, EDS, DSC 등에 의해 친수기의 도입 및 도입경로를 확인한 결과, 하이드록실기가 친수성기로 도입되었고, 도입경로로는 주쇄의 탈수소화 반응경로에 의해 이루어진 것으로 추론 할 수 있었다. 제조막의 친수화는 접촉각 측정을 통하여 평가하였다.(pristine PVDF로 제조된 막의 접촉각은 약 62℃ 125 K Gray-PVDF로 제조된 막의 접촉각은 13℃). 또한 제조된 PVDF 다공막의 다공성도를 수은압입측정을 통하여 평가하였으며 SEM 이미지를 통하여 몰폴로지 및 표변 공경싸이즈를 관찰하였다. 그들의 결과는 전자빔의 선량이 높게 조사된 PVDF전구체를 사용한 막일수록 공경의 크기 및 다공도(pristine PVDF : 82%, 125 K Gray-PVDF : 63%)가 감소되고 있음을 나타내었다. 순수 투과실험에서도 동일한 경향을 나타내어 pristine PVDF의 경우는 892 LMH, 125 K Gray-PVDF의 경우는 355 LMH의 결과를 얻었다.
[ 250℃의 고온에서 수증기 선택 투과 특성을 가지는 silica 막을 메탄을 탈수에 의한 dimethyl ether (DME) 합성 반응에 분리막 반응기로 적용하였다. Silica 전구체로서 tetraethoxysilane (TEOS)을 이용하여 초음파 분무 열분해 및 기상화학 증착법(CVD)법 등에 의해 다공성 스테인레스 스틸(SUS)에 silica 막을 합성하였다. CVD법에 의해 합성한 silica막의 수증기 투과도 및 메탄올에 대한 분리계수 상관관계 trade-off 선이 열분해 silica 막보다 높이 존재하였다. 수증기 투과도가 1.2×10-7;mol;·;m-2;·;S-1;·;Pa-1 이상이고, 메탄올에 대한 분리계수가 10 이상의 성능을 가지는 분리막 반응기에 대해서 기존 반응기 대비 20% 이상 메탄을 전환율이 향상되었다. 고온 수증기 선택성 silica 막이 메탄을 탈수 반응에 의해 생성되는 수증기를 제거함으로서 촉매 활성 저하를 억제하여 반응 전환율을 개선시키는 막 반응기로서의 효과를 확인할 수 있었다.
분리막 접촉기는 액체-액체, 기체-액체와 같이 두 개의 다른 상 사이에 막이 상계면 혹은 상 장벽의 역할을 수행하여 두 상간의 물질전달이 이루어지게 하는 장치이다 분리막 접촉기는 기체-액체 또는 액체-액체 간에 접촉을 통해 안정된 계면을 형성시켜줌으로써 인위적으로 물질전달속도 조절이 가능할 뿐만 아니라 접촉면적이 크고 기존 분리정제 공정의 운전 시 발생할 수 있는 유화(emulsion), 범람(flooding), 편류(channeling), 기포생성(foaming), 그리고 부하(unloading) 등과 같은 기술적 문제점을 보완할 수 있어 이에 대한 연구가 활발히 진행되고 있다. 이에 본 논문에서는 분리막 접촉기가 이용되는 공정과 분리막 접촉기에 사용되는 막의 제조방법, 국내외의 연구동향을 고찰하여 분리공정으로써의 분리막 접촉기에 관한 이해를 높이고자 한다.
표면 개질한 다공성 금속 지지체에 초음파 분무 열분해법을 이용하여 silica막을 합성하고, 고온 기체 선택 투과 분리 특성을 조사하였다. Tetraethyl orthosilicate (TEOS)를 전구체로 하여 지지체 세공을 통한 감압 진공을 하면서 873K에서 표면에 defect 없이 균일한 양질의 silica막이 형성되었다. 투과 온도 523 K에서 silica막의 수th/질소 및 수증기/메탄을 분리 계수가 각각 17 및 16 정도의 우수한 선택 투과 성능을 나타냈다. 다공성 금속 지지체의 불균일한 기공에 silica 분체 및 γ-alumina층을 중간층으로 도입하고, 그 위에 열분해법에 의한 silica를 합성한 결과, Knudsen 확산에 의한 투과 영역의 세공이 완전히 제거되어 높은 수소 및 수증기 선택성을 가지는 복합 막이 형성되었다.
고온에서 수소 분리 회수를 목적으로 silica/alumina 복합 막을 합성하였다. 막의 선택 투과 성능을 향상시키기 위해, sol-gel법에 의한 silica 및 alumina층을 중간층으로 도입하고, 그 위에 강제유동 CVD법에 의한 silica를 합성하였다. Sol-gel법에 의해 alpha-alumina tube에 합성한 gamma-alumina 및 silica 막은 Knudsen 확산 영역의 많은 mesopore를 포함하고 있어서 수소 선택 분리 막으로는 적합하지 못했다. 하지만, sol-gel법에 의해 합성한 silica/gamma-alumina층에 강제유동 CVD법으로 silica를 합성한 결과, 질소 투과 영역의 세공이 완전히 제거되어, 높은 수소 선택성을 가지는 복합 막이 형성되었다. 그 막은 온도에 따라 수소 투과 속도가 증가하여 450℃에서 5.57times10-8molm2sLPa1의 수소 투과 속도와, 9.52 kJ/mol의 활성화 에너지를 나타냈다. 분자체 효과에 의해 질소 투과가 완전히 배제되고, 수소만 선택적으로 투과되는 silica/alumina 복합막이 성공적으로 합성된다.
Recently many countries agreed to reduce emissions of greenhouse gases into the atmosphere or at least to keep them at the current level at the Kyoto Protocol. Carbon dioxide has been proven to be 80% of greenhouse gases, contributing to the increase of the earth’s surface temperature. It is reported that half of the CO2 emissions are produced by industry and power plants using fossil fuels. In this article, we review and analysis domestic and abroad R&D policy trends relating to UN framework convention on climate change(UNFCCC).
The emission of volatile organic compounds (VOCs) generated from painting and coating processes is a worldwide problem as contributing factors to the development of photochemical smog and other environmental problems. Common methods of reducing VOC emissions are adsorption on activated carbon, membrane separation, absorption, incineration, or catalytic oxidation. In this article, the environmental issues caused by VOC emissions and the trend of legislation against such emissions will be surveyed first. Several conventional control technologies will then be summarized and the characteristics of each process will be introduced. Lastly, some examples will be described to show the hybrid processes which have been industrially applied for the recovery of VOC.
To improve CO2 permselectivity, a modified silica membrane was prepared by chemical vapor deposition with tetraethoxysilane(TEOS)-ethanol-water, and TEOS-ethanol-water-HCI solution at 300-600℃. The silica was effectively deposited in the mesopores of a γ-alumina film coated on a porous α-alumina tube by evacuating the reactants through the porous wall. In this membrane, CO2 interacts, to some extent, with the pore wall, and CO2/N2 selectivity then exceeds the value of the Knudsen diffusion mechanism, while the membrane derived from TEOS alone has no CO2 selectivity. The silica membrane prepared from TEOS-ethanol-water-HC1 solution showed that CO2 permeance was 2.5×10-7㏖/s-1. m-2. Pa-1 at 30℃ and CO2/N2 selectivity was approximately 3. The CO2 permeance and selectivity was improved by enlarging the surface diffusion with modification of chemical affinity of the silica pores.
For effective CO2 separation using pore size controlled membrane, silica was deposited in the mesopores of a γ-alumina film by chemical vapor deposition of tetraethoxysilane (TEOS) and phenyl-substituted ethoxysilanes at 773-873K. The membranes prepared with phenyl-substituted ethoxysilanes were calcined to remove the phenyl group and control the pore size. The gas permselectivity of prepared membranes was evaluated by using H2, CO2, N2, CH4 and C3H8 single component and a mixture of CO2 and N2. The membranes produced using TEOS contained micropores having permselectivity only to hydrogen, but the phenyl-substituted ethoxysilane derived membranes possessed micropores which are recognizable molecules of CO2, N2 and CH4. In the diphenyldiethoxysilane-derived membrane, the CO2 permeance and selectivity of CO2/CH4 were 10-6 ㎥(STP)·m-2·s-1·kPa-1 and 11, respectively. Therefore, the use of phenyl-substituted ethoxysilane was effective in controlling micropore size for CO2 separation.