검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 17

        2.
        2014.09 KCI 등재 서비스 종료(열람 제한)
        Adsorption and desorption characteristics of the representative 10 kinds components consisting of gasoline vapor on activated carbon were investigated at the temperature range of -30℃∼25℃. The breakthrough curves of each vapors obtained by the Thomas model were well described the breakthrough experimental results of this study. The breakthrough times of each vapors were correlated with the molecular weight, density, and vapor pressure. The breakthrough times had greater correlation with boiling point than molecular weight and density. The slope of the breakthrough curve was a proportional relationship with the rate constant (k) of Thomas model expression. The higher the slope of the breakthrough curve, the rate constant was larger. The biggest slope vapor had the smallest adsorption capacity (qe). Adsorption and desorption characteristics of mixed vapor similar to the gasoline vapor were studied at room temperature (25℃). The mixed vapor consisting of 9 components; group A (pentane, hexene, hexane), group B (benzene, toluene), group C (octane, ethylbenzene, xylene, nonane) was examined. Group A was not nearly adsorbed because of substitution by group C, and the desorption capacity of group A was smaller than group C. The adsorbed substances were confirmed to be Group C.
        3.
        2013.09 KCI 등재 서비스 종료(열람 제한)
        Desorption characteristics of VOCs were investigated for the effective recovery of gasoline vapor. The adsorption capacity and desorption capacity were excellent at relatively low temperatures. The differences in the desorption capacity were not large in the condition; desorption temperature 25℃, desorption pressure 760 mmHg, inlet air flow rate 0.5 L/min, but were relatively great in the condition; desorption temperature 0℃, desorption pressure 60 mmHg, inlet air flow rate 1.0 L/min. The desorption ability of pentane was increased to about 81.4%, and the desorption ability of hexane was increased to about 102%, also the desorption ability of toluene was increased to about 156.7% by changes of temperature, pressure, inlet air flow rate in the experimental conditions. The optimum desorption condition for the effective recovery of VOCs was in the conditions; desorption temperature 0℃, desorption pressure 60 mmHg, inlet air flow rate 1.0 L/min.
        4.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        The purpose of this work is to study the desorption characteristics of water vapor on zeolites saturated with water vapor. Three kinds of zeolite; zeolite 3A, zeolite 4A, and zeolite 5A were used as adsorbent. The desorption experiments with several different temperatures in the range of 90∼150℃ and several different flow rates in the ranges of 0∼0.4 L/min on zeolite bed were carried out. The desorption ability of water vapor was most effective on zeolite 5A among the compared zeolites. The higher the desorption temperature of water vapor was, the faster the desorption velocity was. The desorption ability of water vapor with an air supply was higher than that without an air supply. The most appropriate air flow rate was considered as 0.1 L/min.
        5.
        2012.10 KCI 등재 서비스 종료(열람 제한)
        The purpose of this work is to study the adsorption and desorption characteristics of acetone vapor and toluene vapor from adsorption tower in the VOCs recovery device. The six kinds of activated carbon with different pore structures were used and the adsorption and desorption characteristics were compared according to pore structure, desorption temperature, and adsorption method, respectively. Adsorption capacity of acetone vapor and toluene vapor by batch method was higher than that by dynamic method. Especially, activated carbon with medium-sized or large pores had more difference in adsorption capacity according to adsorption methods as a result of gradually condensation of vapors on relatively mesopore and large pores. Activated carbons with relatively large pores and relatively small saturated adsorption capacity had excellent desorption ability.
        6.
        2011.06 KCI 등재 서비스 종료(열람 제한)
        This work is to compare the experiment results by a continuous fixed-bed adsorption of water vapor, acetone vapor, and toluene vapor on zeolite 13X (SAU) and silica-alumina (SAK). SAU and SAK have very different pore structure but similar composition as inorganic adsorbent. The relationship between the equilibrium adsorption capacity and specific pore size range were studied. Adsorption of water vapor was more suitable on SAU than SAK because SAU has relatively more developed pores around 5 Å than SAK in the pore range of 10 ~ 100 Å. Adsorption of acetone vapor was more suitable on SAK than SAU because SAK has relatively more developed pores around 5~10 Å than SAK in the pore range of less than 10 Å. Adsorption of toluene vapor was more suitable on SAK than SAU because SAK has relatively more developed pores in the pore range of 10~100 Å than SAK. Adsorption capacity of the adsorbent was closely related to the surface area generated in the specific pore size region. But it was difficult to distinguish the relationships between adsorption capacity and micro area, and the external surface area of adsorbent.
        7.
        2011.05 KCI 등재 서비스 종료(열람 제한)
        The purpose of this work is to present the experiment results by a dynamic adsorption of water vapor on pelletized zeolites (ADZ300, ADZ400, and ADZ500) in fixed bed. The breakthrough curves of water vapor with several different concentrations and temperature in the range of 25~45 ℃ on zeolite bed were investigated. In the same conditions, the breakthrough time on ADZ400 and ADZ500 were little longer than ADZ300, and the equilibrium adsorption capacity on ADZ500 was highest. The higher the concentration of water vapor was, the faster the breakthrough time was, and the slope of breakthrough curves showed a tendency to increase. The faster the flow rate of water vapor was, the faster the breakthrough time was relatively, but variations between flow rate and breakthrough time did not have a proportional relationship. The breakthrough curve maintained constant gradient in spite of variation of flow rate in the same concentration. The temperature rise in zeolite bed by adsorption heat was occurred in the early stage of adsorption. After water molecule layers were formed on the surface of zeolite, the temperature was slowly cooled by water vapors continuously flowed in as constant temperature. The greater the concentration of water vapor and adsorption temperature were, the temperature difference in zeolite bed was increased.
        8.
        2006.07 KCI 등재 서비스 종료(열람 제한)
        This study is to investigate the relationship between pore structures of activated carbons and adsorption characteristics of toluene vapor using dynamic adsorption method. The surface areas of below 10Å in the pore diameter of activated carbons used in this experiment were in the range of 72~93% of total cumulative surface area and the toluene vapor equilibrium adsorption capacities were in the range of 350~390mg/g. Activated carbons having larger toluene adsorption capacity than the compared activated carbons had relatively pores in the pore diameter range of 7~10Å. Linear relationship between equilibrium adsorption capacity and cumulative surface area was in the diameter range of over 7Å. It was thought that toluene vapor was relatively well adsorbed on surfaces of pores of over 7Å.
        9.
        2003.07 KCI 등재 서비스 종료(열람 제한)
        The emission of volatile organic compounds (VOCs) generated from painting and coating processes is a worldwide problem as contributing factors to the development of photochemical smog and other environmental problems. Common methods of reducing VOC emissions are adsorption on activated carbon, membrane separation, absorption, incineration, or catalytic oxidation. In this article, the environmental issues caused by VOC emissions and the trend of legislation against such emissions will be surveyed first. Several conventional control technologies will then be summarized and the characteristics of each process will be introduced. Lastly, some examples will be described to show the hybrid processes which have been industrially applied for the recovery of VOC.
        10.
        2002.04 KCI 등재 서비스 종료(열람 제한)
        Physico-chemical properties of the activated sludges(Suyoung and Changlim treatment plant), such as SVI(sludge volume index), absorbance, specific surface area, and specific resistance using Buchener funnel test were investigated with changing anaerobic storage time. This experimental condition was found that it was possible to estimate a linear relationship between their parameters such as specific surface area, specific resistance, and sludge volume index(SVI). The specific surface area and the specific resistance to filtration of the activated sludges of Suyoung and Changlim treatment plant were found as 123.6~136.6㎡/gDS and 41.5~44.9㎡/gDS(dry solid), and 1.09×1014 ~ 5.48×1014m/kg and 1.05×1014 ~ 2.48×1014m/kg, respectively. The results gave a good linear relationship between the specific surface area and the specific resistance, r=2.25×1012s-8.10×1013(R2=0.8885) at Suyoung treatment plant and r=1.26×1013s-4.75×1014(R2=0.8756) at Changlim treatment plant.
        11.
        2002.04 KCI 등재 서비스 종료(열람 제한)
        Optical microscope, SEM (Scanning Electron Microscopy) and fluorescent microscope were used for qualitative and morphological studies of the attached biomass on PE (polyethylene) substratum under anaerobic condition. It was shown by the observation of optical microscope that the initial attachment of biomass began in crevices of the surface of PE. The shape and structure of the attached biofilm could be observed by SEM photographs, but species of bacteria were and methanogens were not classified. A large number of methanogenic bacteria were identified on the surface of PE substratum by fluorescence under 480nm of radiation. It was estimated that methanogenic bacteria was also related to initial attachment of biomass under anaerobic condition.
        12.
        2002.03 KCI 등재 서비스 종료(열람 제한)
        The lab-scale anaerobic continuous reactor which was filled with the sludge of anaerobic digestion from Suyoung wastewater treatment plant was operated by feeding of various concentrations and flow rates. This experiment indicated that more than 6,870 mgCOD/L of substrate concentration was required to promote good metabolism and growth of anaerobic biomass. And increasing loading rate slowly was also required in order to treat substrate of higher concentration and higher loading rate. The substrate concentration of about 10,000 mgCOD/L was adequate to generate biogas efficiently. The pH was sharply decreased at the onset of higher loading rate, but the pH was restabilized soon at 8. During the experiment, the amount of the attached biomass was kept constant.
        13.
        2000.08 KCI 등재 서비스 종료(열람 제한)
        Activated carbons were prepared from Korean coal by steam activation in this study. The variation of pore structure of the activated carbons were investigated according to different carbonization temperatures. Yield, surface area, pore volume and pore structure of this activated carbon were compared with those of activated carbon prepared without carbonization. The investigated carbonization temperature ranged from 700℃ to 1,000℃. Carbonization was carried out in nitrogen atmosphere for 70 minutes and activation was performed by steam at 950℃ for 210 minutes. Surface area and pore volume of the resulting activated carbons increased with carbonization temperature. Also pore volume increased by 20% compared to the activated carbon without carbonization. Especially, in mesopore region, the activated carbon carbonized at 900℃ had more pores by 60% than that of activated carbon carbonized at other temperature.
        14.
        2000.08 KCI 등재 서비스 종료(열람 제한)
        Activated carbons were prepared from Youngwall coal by steam activation in this study. The feasibility of the Youngwall coal to commercial activated carbon was examined. The variation of pore structures and the development of porosity in activated carbons were investigated by changing activation conditions in batch type apparatus. The values of BET surface area and adsorption capacity of iodine and methylene blue of the resulting activated carbons were obtained as high as 1,000㎡/g, 900㎎/g, 150㎖/g, respectively. Youngwall activated carbon prepared in this study showed much higher pore volume in pore diameter over l0Å than that of commercial reference activated carbon(Ningxia Taihua ZJ-15C) produced from China anthracite.
        15.
        1998.06 KCI 등재 서비스 종료(열람 제한)
        In order to develop of support media for biofilm reactor, physicochemical properties and attachability of surface of activated carbon, clay mineral, non-clay mineral, and waste mold sand were examined. Measured physicochemical properties of materials were surface roughness, mean particle size, surface area, hydrophobicity, and surface charge. At a tested materials, activated carbon was the best attachable material and microorganisms were attached 20.1 × 10^7 CFU/㎠ at surface, compared with diatomaceous earth which were attached of 9.2 × 10^7 CFU/㎠. In our research, surface area and hydrophobicity showed more influence than any other factor on attachment of microorganisms.
        16.
        1997.02 KCI 등재 서비스 종료(열람 제한)
        The objective of this study was to examine the transient response to hydraulic shocks in an inverse fluidized bed biofilm reactor(IFBBR) for the treatment of apartment sewage. The hydraulic shock experiments, when the system were reached at steady state with each HRT 12, 7, and 4hr, were conducted by changing twice HRT per day during 3days. The SCOD, SS, DO, and pH of the effluent stream were increased with hydraulic shock, but easily recovered to the steady state of pre-hydraulic shock condition. In spite of hydraulic shock, there were not much variation of biomass concentration, biofilm thickness, and biofilm dry density.
        17.
        1996.06 KCI 등재 서비스 종료(열람 제한)
        An inverse fluidized-bed biofilm reactor (IFBBR) was used for the treatment of highly-emulsified oily wastewater. When the concentration of biomass which was cultivated in the synthetic wastewater reached to 6000㎎/L, the oily wastewater was employed to the reactor with a input COD concentration range of 50㎎/L to 1900㎎/L. Virtually the IFBBR showed a high stability during the long operation period although some fluctuation was observed. The COD removal efficiency was maintained over 90% under the condition that organic loading rate should be controlled under the value of 1.5 ㎏COD/㎥/day, and F/M ratio is 1.0㎏COD/㎏VSS/day at 22℃ and HRT of 12 hrs. As increasing organic loading rates, the biomass concentration was decreased steadily with decreasing of biofilm dry density rather than biofilm thickness. Based on the experimental results, It was suggested that the decrease in biofilm dry density was caused by a loss of biomass inside the biofilm.