검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        1997.02 KCI 등재 서비스 종료(열람 제한)
        The variations of gas hold-up, overall volumetric oxygen mass transfer coefficients and liquid circulation velocity in an internal loop reactor were investigated to manifest scale-up effect. The relationship between superficial gas velocity and gas hold-up were found as Ugr = 0.045 εr in the pilot-scale and Ugr = 0.056 εr in the bench-scale reactor. The overall volumetric oxygen mass transfer coefficient, K_La was slightly increased in the pilotscale than in the bench-scale reactor. Flow regime was changed from the bubble flow to the churn-turbulent flow when the superficial gas velocity reached to 3.5 - 4 ㎝/sec in the pilot-scale.
        2.
        1996.06 KCI 등재 서비스 종료(열람 제한)
        An inverse fluidized-bed biofilm reactor (IFBBR) was used for the treatment of highly-emulsified oily wastewater. When the concentration of biomass which was cultivated in the synthetic wastewater reached to 6000㎎/L, the oily wastewater was employed to the reactor with a input COD concentration range of 50㎎/L to 1900㎎/L. Virtually the IFBBR showed a high stability during the long operation period although some fluctuation was observed. The COD removal efficiency was maintained over 90% under the condition that organic loading rate should be controlled under the value of 1.5 ㎏COD/㎥/day, and F/M ratio is 1.0㎏COD/㎏VSS/day at 22℃ and HRT of 12 hrs. As increasing organic loading rates, the biomass concentration was decreased steadily with decreasing of biofilm dry density rather than biofilm thickness. Based on the experimental results, It was suggested that the decrease in biofilm dry density was caused by a loss of biomass inside the biofilm.
        3.
        1996.02 KCI 등재 서비스 종료(열람 제한)
        Hydrodynamic characteristics such as gas holdup, liquid circulation velocity and bed expansion in a hexagonal inverse fluidized bed were investigated using air-water system by changing the ratio (Ad/Ar) of cross-sectional area between the riser and the downcomer, the liquid level(Hl/H), and the superficial gas velocity(Ug). The gas holdup and the liquid circulation velocity were steadily increased with the superficial gas velocity increasing, but at high superficial gas velocity, some of gas bubbles were carried over to a downcomer and circulated through the column. When the superficial gas velocity was high, the Ad/Ar ratio in the range of 1 to 2.4 did not affect the liquid circulation velocity, but the maximum bed expansion was obtained at Ad/Ar ratio of 1.25. liquid circulation velocity was expressed as a model equation below with variables of the cross-sectional area ratio(Ad/Ar) between riser to downcomer, the liquid level(H1/H), the superficial gas velocity(Ug), the sparger height[(H-Hs)/H], and the draft plate level(Hb/H). Uld=11.62g^0.75(Hl/H)^10.30(Ad/Ar)^-0.52(H-Hs/H)^0.91(Hb/H)^0.13
        4.
        1995.08 KCI 등재 서비스 종료(열람 제한)
        Stability of reactor and effect on biofilm characteristics were investigated by varying the hydraulic residence time in an inverse fluidized bed biofilm reactor(IFBBR). The SCOD removal efficiency was maintained above 90 % in the HRT range of 12hr to 2hr, but the TCOD removal efficiency was dropped down to 50 % because of biomass detachment from overgrown bioparticles. The reactor was stably operated up to the conditions of HRT of 2hr and F/M ratio of 4.5㎏COD/㎥/day, but above the range there was an abrupt increase of filamentous microorganisms. The optimum biofilm thickness and the biofilm dry density in this experiment were shown as 200 ㎛ and 0.08 g/㎤, respectively. The substrate removal rate of this system was found as 1st order because the biofilm was maintained slightly thin by the increased hydraulic loading rate.
        5.
        1994.03 KCI 등재 서비스 종료(열람 제한)
        Effect of the liquid circulation velocity on the biofilm development was investigated in an inverse fluidized bed biofilm reactor(IFBBR). To observe the effect of the influent COD concentration on biofilm simultaneously, the influent COD value was adjusted to 1000㎎/ℓ for 1st reactor, and 2500㎎/ℓ for 2nd reactor. The liquid circulation velocity was adjusted by controlling the initial liquid height. As the liquid circulation velocity was decreased, the settling amount of biomass was increased and the amount of effluent biomass was decreased. Since the friction of liquid was decreased by the decrease of liquid circulation velocity, the biofilm thickness was increased and the biofilm dry density was decreased. In the 1st reactor, the SCOD removal efficiency was constant regardless of the variation of the liquid circulation velocity, but it was increased by the decrease of the liquid circulation velocity because of more biomass population in 2nd reactor.
        6.
        1993.12 KCI 등재 서비스 종료(열람 제한)
        A number of experiments were conducted in order to investigate the organic removal efficiency and biomass characteristics according to the organic shock loading rate in a fluidized bed biofilm reactor. At the operation conditions of HRT, 8.44 hour, superficial upflow velocity, 0.9 ㎝/sec and temperature, 22±1 ℃, the removal efficiency of SCOD was founded to be 96.5, 92 and 90 % with the organic shock loading rate of 3.5, 10.8 and 33 kgCOD/㎥·day, respectively. Within the F/M ratio ranged 0.4 to 2.0 ㎏COD/㎏VSS·day, the SCOD removal efficiency was shown as 90% at F/M ratio of 2.0 ㎏COD/㎏VSS·day, but the TCOD removal efficiency was 72 % at F/M ratio of 1.8 kgCOD/kgVSS·day. The average biomass concentrations were 7800, 14950 and 27532 ㎎/l on the organic shock loading rate of 3.5, 10.8 and 33 ㎏COD/㎥·day, respectively. This result was agreed with the fact that more biomass could be produced at high concentration of substrate, but some biomass was detached at the onset of shock and easily acclimated at the shock condition.