막 생물 반응기(MBR)에서, 활성화 된 슬러지는 생물학적 성분을 분해하고 막 공정은 이 부유 물질인 박테리아를 분리시킨다. 그러나 MBR에서의 주요 문제는 ‘막 오염’이다. 이 리뷰에서는 ‘막 오염’을 극복하기 위하여 제시된 ‘복합막’을 논의하고 있다. ‘복합막’은 탄소 또는 비탄소 재료 포함하는 막으로 분류할 수 있다. 이 복합막의 친수성은 그래핀, 산화그래핀 (GO) 및 탄소 나노 튜브 또는 그들의 변형 된 부분을 깨끗한 막에 도입시킬 때 향상된다. 이산화규소(SiO2) 또는 이산화티타 늄(TiO2)과 같은 무기 물질 또한 막의 물 흐름을 증가시키기 위해 복합막 형성에 통합된다.
바이오 의약품 생산과정의 대부분 공정에서 분리막이 사용되고 있다. 분리막 공정은 다른 공정의 전처리, 공정 자 체의 불순물 분리, 바이러스 제거, 목표 생성물 농도 조절 및 완충 용액 교환 등에 사용된다. 인체에 사용하는 바이오 의약품 의 바이러스 오염은 심각한 임상 결과와 직결되는 민감한 문제이기 때문에 바이러스 필터는 제품의 효능과 안정성을 보장하 기 위해 중요한 역할을 한다. 바이러스 필터는 일반적으로 표면 개질된 PVDF, PES, CRC 등 다양한 고분자로 만들어진 복합 다층 구조를 가지고 있다. 제조업체에 따라 대칭(symmetric) 또는 비대칭(asymmetric) 등 다른 기공 구조와 형태를 가지고 있 으며, 주름막, 평판 시트 또는 중공사 형태로 사용된다. 바이러스 필터는 Asahi Kasei 를 비롯해 Millipore, Pall, Sartorius 등 몇몇 해외 업체들이 독점적으로 국내에 공급하고 있다. 바이러스 필터를 대체하려면 검증작업을 통해 규제기관의 승인을 받 는 등 상당한 시간과 비용이 소요된다. 최근 일본의 수출규제로 국산화가 중요해진 만큼 제거 성능 고도화 등 선제적으로 기 술자립도를 높여가야 한다.
본 연구에서는 전 바나듐 레독스 흐름전지(VRFB)에 적용하기 위한 세공충진 음이온교환막의 최적 설계 조건을 도출하고자 하였다. 실험결과를 통해 VRFB 충방전 성능에 가장 지대한 영향을 미치는 막 설계인자는 이온교환용량, 지지체의 기공율 및 가교도임을 확인할 수 있었다. 즉, 상기 인자들에 의해 VRFB의 ohmic loss와 활물질의 crossover가 결정되었다. 또 한 세공충진 음이온교환막의 제조 시 낮은 가교도에서 이온교환용량을 감소시키는 것과 높은 이온교환용량에서 가교도를 증 가시키는 두 가지 방안을 검토하였다. 그 결과 충분히 높은 이온교환용량에서 가교도를 최적화 하는 것이 VRFB 충방전 성능 관점에서 바람직한 것으로 판단되었다.
리튬 덴드라이트의 효과적인 억제를 위해 유/무기 복합체를 리튬메탈 전극의 보호층으로 사용하였다. 유기물로는 PVDF-HFP가 사용되었으며 무기물로는 TiO2가 사용되었다. 유기물로 사용된 PVDF-HFP는 높은 유연성을 가지는 고분자로서 무기물의 matrix 역할을 하며, 무기물로 사용된 TiO2 나노입자는 보호막의 기계적 강도와 이온전도성을 향상시켜주는 역할을 하였다. 합성된 보호막은 SEM, AFM, XRD를 통하여 PVDF-HFP matrix에 TiO2가 잘 분산되어 있는 형태인 것을 확인할 수 있 었다. 또한 전기화학적 분석 결과, 향상된 기계적 물성과 이온전도성으로 인해 polymer-inorganic composite은 비교 샘플(untreated 와 PVDF-HFP 보호층) 대비 100번째 사이클까지 80%의 높은 쿨롱 효율 및 20 mV 미만의 낮은 과전압을 나타내었다.
리튬금속전지(LMB)는 매우 큰 이론 용량을 갖지만 단락(short circuit), 수명 감소 등을 야기하는 덴드라이트(dendrite) 가 형성되는 큰 문제점을 갖고 있다. 본 연구에서는 poly(dimethylsiloxane) (PDMS)에 graphene oxide (GO) nanosheet를 고르게 분산시킨 PDMS/GO 복합체를 합성하였고 이를 박막 형태로 코팅하여 덴드라이트의 형성을 물리적으로 억제할 수 있는 막의 효과를 이끌어내었다. PDMS의 경우, 그 자체로는 이온 전도체가 아니기 때문에 리튬 이온의 통로를 형성시켜 리튬 이온의 이동을 원활하게 하기 위하여 5wt% 불산(HF)으로 에칭하여 PDMS/GO 박막이 이온전도성을 가질 수 있도록 하였다. 주사전자현미경(scanning electron microscopy, SEM)을 통해 전면 및 단면을 관찰하여 PDMS/GO 박막의 형상을 확인하였다. 그리고 PDMS/GO 박막을 리튬금속전지에 적용하여 실시한 배터리 테스트 결과, 100번째 사이클까지 쿨롱 효율(columbic efficiency) 이 평균 87.4%로 유지되었고, 박막이 코팅되지 않은 구리 전극보다 과전압이 감소되었음을 전압 구배(voltage profile) 를 통해 확인하였다.
본 연구에서는 poly(ether-block-amide) (PEBAX)/poly(ethylene) glycoldiacrylate (PEGDA)/zeolitic imidazolate framework-8 (ZIF-8)-polyethersulfone (PES) 복합막을 제조하여 N2와 CO2의 기체투과 성질을 조사하였다. 각 분자량별 PEGDA 함량 증가에 따른 PEBAX/PEGDA-PES 복합막의 기체 투과도는 감소하였고, CO2/N2 선택도는 거의 일정한 값을 보 이다가 PEGDA 30 wt% 이후 점차 증가하였다. 특히 PEGDA250 g/mol 50 wt%가 첨가되어 제조된 PEBAX/PEGDA250 g/mol 50 wt%-PES의 경우 15.1의 선택도를 보였다. 그리고 각 분자량별로 CO2/N2 선택도가 거의 일정한 범위인 PEGDA 0~30 wt%의 복합막에 대해 ZIF-8에 따른 기체투과 성질을 조사하였다. 대체적으로 첨가되는 ZIF-8 함량이 증가할수록 N2와 CO2의 투과도가 점차 증가하였고, CO2/N2 선택도는 PEBAX/PEGDA250 g/mol 30 wt%/ZIF-8 20 wt%-PES 복합막에서 3.4 로 가장 높았다.
본 연구에서는 고분자 전해질막을 구성하고 있는 고분자 주쇄의 반복단위 개수를 변경해 가며 수화채널 모폴로지 와 이온전도도의 변화를 비교하였고, 최종적으로 분자동역학 전산모사 수행 시에 적정한 고분자 모델을 선정하기 위한 기준 을 제시하고자 하였다. 고분자 주쇄의 길이가 가장 짧은 모델에서 주쇄 및 술폰산기의 움직임이 커지는 것을 관찰할 수 있었 지만, 수화채널 모폴로지는 특별한 상관관계를 발견할 수 없었다. 또한, 수화채널 모폴로지에 가장 큰 영향을 받는 수소이온 전달 능력의 특성 상, 수소이온 전도도에서도 고분자 주쇄의 길이와 큰 상관관계를 보이지는 않았다. 이러한 결과는 특히 바 인더용 이오노머 제조에 대한 중요한 정보를 제공한다. 일반적으로 바인더용 이오노머의 경우 고분자 전해질막 소재를 저분 자량으로 합성하여 사용하게 되는데, 이때 주쇄/술폰산기의 움직임이 향상되므로 촉매층을 잘 둘러싸는 역할을 할 수 있는 반면에, 수소이온 전달 능력 자체에 있어서는 특별한 변화가 없을 것을 예상할 수 있다. 결론적으로, 바인더용 이오노머 제조 시에는 수소이온 전달 성능보다는 물성에 좀 더 초점을 맞추어 분자량 및 구조 설계가 필요할 것이다.
본 연구에서는 정삼투 중공사막 모듈에서 중공사막의 가닥을 비틀어 배치하였을 때의 효과를 알아보기 위해 CFD 전산 유체 역학 프로그램을 통해 5개의 다른 각도로 비틀린 중공사막 모듈을 설계하고 시뮬레이션하여 비틀리지 않은 모듈과 비교하였다. 실험 결과, 중공사막이 비틀렸을 때, 모듈 내부의 유도 용액의 농도가 비틀리지 않을 때에 비해 고르게 분포하였 다. 모듈 입구의 압력은 중공사막의 비틀림과 관계없이 일정한 값을 보였지만 출구의 압력은 중공사막이 비틀린 정도가 커질 수록 증가하는 추세를 보였다. 출구의 압력이 높아짐에 따라 막 내부의 유체 속도가 감소하고 모듈 체류 시간이 증가하여 막 사이의 물질 교환이 원활하게 이루어질 것으로 예측된다. 이는 결과적으로 막이 비틀려 있을 때의 모듈 플럭스가 투과 수량 이 차지하는 비율이 그렇지 않을 때에 비해 2배 증가하였다.