유리상 고분자 멤브레인은 높은 투과도와 선택도를 동시에 달성하면서도 에너지 소비가 낮아, 고성능 기체 분리 용 멤브레인 후보로 주목받아 왔다. 그러나 기존 고분자 멤브레인은 Robeson 상한선으로 표현되는 투과도-선택도 간의 고유 한 상충관계에 의해 성능이 제한되는 한계를 지닌다. 최근 수년간, 고유 자유부피가 큰 유리상 고분자, 특히 고유 미세다공성 고분자(PIMs) 및 6FDA 기반 폴리이미드와 같은 고성능 재료의 개발이 활발히 이루어지며 이러한 병목 현상을 극복하고 있 다. 고분자 주 사슬 구조 설계, 후 합성 기능화, 고분자 블렌딩, 다공성 필러를 포함한 혼합 매질 멤브레인(mixed-matrix membrane, MMM) 제조, 열재배열 공정 등 다양한 전략을 통해 기체 분리 성능이 크게 향상되었다. 본 총설에서는 유리상 고 분자 기반 기체 분리 멤브레인의 최신 연구 동향을 다룬다. 특히, PIM-1 및 유도체, 6FDA 기반 폴리이미드, MMM을 중심으 로 어떻게 투과도-선택도 상충관계, 물리적 노화, 가소화 저항성과 같은 핵심 기술적 과제를 해결하는지를 다룬다. 최신 문헌 분석을 통해, 유리상 고분자 멤브레인이 기체 분리 성능의 새로운 기준을 제시하고 있으며, 탄소 포집부터 천연가스 처리에 이르기까지 상업적 적용 가능성이 높아지고 있음을 논의한다. 마지막으로, 이러한 멤브레인 기술이 산업적 응용으로 이어지 기 위한 주요 과제와 향후 연구 방향에 대해 고찰한다.
Pebax 기반 멤브레인은 최근 가스 분리 응용 분야, 특히 이산화탄소(CO2) 포집과 관련하여 큰 주목을 받아왔다. 본 총설은 Pebax 기반 멤브레인에 관한 연구 논문을 종합적으로 다루고 있으며, 전통적인 투과도와 선택성 간의 상충 관계를 극복하기 위한 실험적 및 멤브레인 모듈 전략을 중점적으로 다룬다. 주요 접근법으로는 이산화탄소 친화성 첨가제와의 고분 자 블렌딩, 금속-유기 골격체(MOFs), 제올라이트 이미다졸레이트 골격체(ZIFs), 공유 유기 골격체(COFs), 이차원(2D) 나노소 재와 같은 다공성 충전재를 도입한 혼합매질 멤브레인(MMMs)을 다룬다. 또한, 멤브레인 자체 투과도의 향상을 위한 박막 복 합체(TFCs) 및 중공사형(hollow fiber) 멤브레인 기술에 대해서도 다룬다. 이러한 혁신적 접근은 다수의 Pebax 기반 멤브레인 이 Robeson upper bound를 넘어설 수 있는 높은 이산화탄소 투과도와 선택성을 동시에 달성하였다. 본 총설에서는 충전재의 분산도, 고분자-충전재 간 계면 호환성, 그리고 구조적 형태가 가스 전달 성능에 미치는 영향을 중점적으로 분석한다. 또한 가소화(plasticization), 노화(aging), 습윤 환경에서의 성능과 같은 실용적 멤브레인의 한계를 논의하며, Pebax 기반 기체 분리 멤브레인의 현재 연구 동향, 소재 설계 원리, 향후 발전 방향에 대한 심층적인 내용을 다룬다.
공유 유기 골격체(covalent organic frameworks, COF)는 기능성을 정밀하게 설계하고 제어할 수 있는 결정성 다 공성 소재로서, 차세대 연료전지 멤브레인으로 주목받고 있다. 표준 양성자 교환막인 나피온(Nafion)은 높은 비용과 좁은 가 용 범위 등의 한계에 직면해 있다. 본 논문은 COF를 다양한 고분자 매트릭스에 도입하여 이러한 단점을 극복하기 위한 최신 연구 전략을 심도 있게 다룬다. 특히 양성자 교환막 연료전지(proton exchange membrane fuel cells, PEMFC), 음이온 교환막 연료전지(anion exchange membrane fuel cells, AEMFC), 그리고 고온(high-temperature) PEMFC (HT-PEMFC)용 COF 기반 복합막의 설계와 성능 특성에 집중한다. 다양한 COF 기능화 및 복합화 전략을 통해 이온 전도도, 기계적 강도 및 운전 안정 성을 향상시킨 주요 연구들을 비평적으로 논하며, 연료전지의 전반적인 효율 향상에 대한 COF의 잠재력을 조명한다.
만성 상처, 특히 다제내성 세균 감염으로 복잡한 상처는 임상적 상처 관리에서 지속적인 도전 과제이다. 자연 유 래 생체 고분자인 키토산은 고유한 항균 활성, 생체 적합성 및 필름 형성 특성으로 주목받고 있다. 그러나 단독 사용은 기계 적 강도가 낮고 약물 보유가 짧기 때문에 제한적이다. 이 총설에서는 은 나노입자(AgNPs), 폴리카프로락톤(polycaprolactone, PCL), 셀룰로오스 나노섬유(cellulose nanofibers, CNF) 및 그래핀 옥사이드(graphene oxide, GO)를 포함하는 시스템을 중심 으로 키토산 기반 복합막의 최근 발전을 살펴본다. 이러한 복합막은 항균 효능, 기계적 내구성 및 조절된 약물 방출을 향상시 켜 막 성능을 향상시킨다. 이러한 다기능 막의 물리화학적 특성, 항균 결과, 세포 적합성 및 치료 잠재력을 비판적으로 평가 하여 차세대 상처 드레싱 개발에 대한 가능성을 강조한다.
나피온은 연료 전지용 고분자 전해질막(polymer electrode membrane, PEM)으로서 가장 실용적인 막 중 하나로 꾸준히 부상해 왔다. 그러나 나피온 막은 높은 온도에서의 낮은 전도도와 기체 분자에 대한 물리적 장벽과 같은 몇 가지 문 제를 가지고 있다. 이러한 문제를 해결하기 위해 이온성 액체(ionic liquid, IL)와 결합하여 전도도와 반응 속도를 향상시킬 수 있는 방안이 제시되고 있다. 나피온 막을 IL, 특히 IL-나피온 막의 다양한 종류와 구성으로 도핑한 결과, 1-butyl-3-methylimidazolium (BMI+)과 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMOTf)와 같은 IL이 일반적으로 사용되는 나피온 115 및 나피온 117 막과 비교했을 때 이온 전도도, 열적 안정성 및 수분 흡수 특성을 향상시킬 수 있다는 것이 밝혀 졌다. 본 리뷰에서는 이러한 효과와 나피온 막 매트릭스 내 이온성 액체의 변화로 인해 어떻게 발생하는지에 대해 논의하고 자 한다.
폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVDF) 기반의 중공사막은 뛰어난 열적, 기계적, 화학적 안정 성을 통해 분리 응용을 위한 유연한 플랫폼을 제공한다. 본 총설에서는 PVDF 중공사막의 생산 및 표면 처리 기술의 최신 발 전과, 이를 담수화 및 염료/염 분리 공정에 적용한 사례를 검토하였다. 딥 코팅 기술과 화학적 접목, 그리고 TiO2, MXene, MoS2와 같은 나노소재를 혼합층 형성을 통해 첨가하는 것은 소수성, 습윤 방지 성능 및 투과성에서 뚜렷한 향상을 가져왔으 며, 야누스 트라이보어 및 이중층 막은 막 증류 공정을 장기간 수행할 때 내오염 저항성과 기계적 강도에서 우수한 성능을 보였다. 그리고 혼합 매트릭스 막에서 MOF와 rGO 같은 탄소 기반 충전재를 결합하면 높은 염 거부 수준(> 99.9%)과 물 유 속(> 25 kg/m2·h)을 달성하여 해수 및 산업 폐수 처리에 적합하였다. 본 총설에서는 투과증발, 나노여과, 진공 막 증류 (vacuum membrane distillation, VMD) 방법이 PVDF 막과 어떻게 시너지 효과를 발휘하는지를 검토하였으며, 첨가제 최적화 및 표면 기능화와 함께 막 구조를 설계함으로써 막 성능을 향상시킬 수 있으며 이를 통해 PVDF 중공사막이 실험실 규모의 연구에서 산업 규모 생산으로 확장될 수 있음을 보였다.
연속식 전기탈이온(continuous electrodeionization, CEDI)은 고순도수(high purity water, HPW)를 제조하기 위한 핵심적인 수처리 기술이다. 본 연구에서는 CEDI 성능 향상을 위해 이온교환수지 층의 구성과 이온교환막의 특성이 미치는 영향을 고찰하였다. 먼저, 다양한 이온교환수지 층 구성(mixed-bed, layered-bed, separated-bed)을 비교한 결과, mixed-bed 구 조가 가장 높은 염 제거율과 낮은 에너지 소비를 나타내었다. 이어서 이온교환수지 조성의 영향을 평가하기 위해 chromatography 수지와 gel 수지의 부피비율(C:G) 및 음이온/양이온 수지 비율(A:C)을 조절한 실험을 수행하였다. 그 결과, C:G = 25:75 및 A:C = 5:5 조건에서 가장 우수한 탈염 성능을 나타냈으며, 이는 적절한 공극 구조와 이온교환기 함량 간 균형을 통 해 물 분해 반응 및 이온 전달이 최적화된 결과로 해석된다. 또한, 두 종류의 상용 불균질 이온교환막(Lanxess 막과 금화정수 막)을 비교한 결과, 금화정수 막이 Lanxess 막보다 더 높은 이온전도도, 이온교환용량, 투과선택성을 나타내었고, 이에 따라 더 높은 탈염 효율과 낮은 에너지 소비를 나타내었다. 본 연구의 결과는 고효율 CEDI 시스템 설계를 위한 이온교환수지 층 조성 및 멤브레인 특성의 최적화 방향을 보여준다.
고온 고분자 전해질막 연료전지(high temperature polymer electrolyte membrane fuel cell, HT-PEMFC)는 CO 내 성이 높고 물 관리가 용이하다는 장점이 있다. 그러나 높은 온도에서의 작동으로 막의 손상이 쉬우며, 이로 인한 재구매 비용 을 결코 무시할 수 없어 반복 실험에 제약이 따른다는 단점이 있다. 이런 단점을 해결하기 위해, 여러 물리적 현상 간 상호작 용을 정밀하게 계산할 수 있는 전산유체역학(computational fluid dynamics, CFD)을 이용하여 실제 셀의 성능을 예측하는 연 구에 대한 관심이 증가하고 있다. 하지만, HT-PEMFC를 비롯한 여러 연료전지 모델을 모사하는 논문에서는 다차원 모델에 대한 분석이 많이 보고되지 않아 어떤 모델이 실제와 적합한지 알기 힘들다. 따라서, 본 연구에서는 CFD를 활용하여 Butler –Volmer 방정식에 지배받는 1D와 2D HT-PEMFC 모델을 제작하였으며, 전해질막 전도도에 따른 성능을 분석하였다. 이를 통해, 다차원 모델 각각의 특징과 한계를 알아보고자 하였다.
본 연구에서는 고분자 점도 조절제를 첨가하여 졸-겔법 기반 알루미나 나노여과막을 단일 공정으로 제조하고, 코 팅층의 구조 및 성능을 제어하는 방법을 제시하였다. Hydroxypropyl cellulose (HPC, Mw ~80000) 고분자를 알루미나 졸에 첨가하여 점도를 10 mPa·s에서 최대 4200 mPa·s까지 조절하였으며, 이를 통해 알루미나 중공사 지지체 표면에 균일하고 결 함이 없는 선택층을 형성하였다. HPC 함량이 증가할수록 코팅층 두께가 증가하였으나, 기공 크기 증가에 따라 분리 성능이 저하되었다. 2:1 (졸:HPC 고분자 용액) 혼합비에서 제조된 나노여과막은 두께 3.20 μm의 얇은 선택층을 형성하여 높은 수투 과도(12.9 LMH/bar)와 우수한 제거 성능(PPG 1050 Da 제거율 60%, PEG 1500 Da 제거율 90%, MgCl2 제거율 80%)을 나타 냈다. 반면, 1:2 혼합비에서는 선택층 두께가 10.2 μm로 증가하였으나, 기공 크기가 증가하여 3400 Da MWCO와 64% 염 제 거율을 보였다. HPC 고분자를 활용한 점도 제어는 졸-겔 코팅층의 두께, 기공 구조 및 분리 성능을 효과적으로 조절할 수 있 음을 입증하였다.