Nowadays, advanced composite material are widely used in civil & architectural structures. Analysis of foam core sandwich bridges for simple supported made by advanced composite materials is presented in this paper. For the design of advanced composite materials bridge, foam core shape is economical and profitable. Navier’s solutions are compared in this paper to verify the authenticity of Finite Difference Method. Finite Difference Method is used for analysis of the pertinent problems. In this study, reduction rate of tensile strength for E-glass fibers due to increase in size, strength reduction ratios of according to mass, stress changes according to form core height and safety ratio due to increase form core height is presented. Tasi-Wu failure strength theory are used. Strength reduction is necessary for safe design of a structures.
In this study, the fracture property of impact absorption is investigated using the carbon fiber composite material. And this property is compared with the carbon fiber composite material with aluminum foam. Carbon fiber composite material has the high specific strength and rigidity and the superior durability and fatigue life and light weight. On the ground of these properties, this material has been used widely at the fields of airplane, national defence industry, vehicle and the various industrial areas. Aluminum foam can also be applied at the various areas as it is the material with the superior properties. And this foam is the material which can solve the problem on the light weight of particular product. At the condition of the impact energy of 20J, the maximum loads of CFRP sandwich composite and CFRP sandwich composite with aluminum foam core are shown to be 5.7 kN and 6.5 kN respectively. In case of maximum energies, these values are shown to be 19 J and 17.5 J respectively. At the impact energy of 50 J, the maximum loads of CFRP sandwich composite and CFRP sandwich composite with aluminum foam core are shown to be 7 kN and 8.8 kN respectively. In case of maximum energies, these values are shown to be 43 J and 48 J respectively. At the impact energy of 80 J, the maximum loads of CFRP sandwich composite and CFRP sandwich composite with aluminum foam core are shown to be 9.2 kN and 11 kN respectively. In case of maximum energies, these values are shown to be 70 J and 63 J respectively. As the result of this study, the mechanical properties are investigated through the impact experiments on the composites composed of the closed aluminum foam and the carbon fiber reinforced plastic used frequently as absorbents.