This study proposes the use of a cobalt-based Prussian blue analogue (Co-PBA; potassium cobalt hexacyanoferrate), as an adsorbent for the cost-effective recovery of aqueous ammonium ions. The characterization of Co-PBA involved various techniques, including Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, nitrogen adsorption-desorption analysis, and zeta potential. The prepared Co-PBA reached an adsorption equilibrium for ammonium ions within approximately 480 min, which involved both surface adsorption and subsequent diffusion into the interior. The isotherm experiment revealed a maximum adsorption capacity of 37.29 mg/g, with the Langmuir model indicating a predominance of chemical monolayer adsorption. Furthermore, the material consistently demonstrated adsorption efficiency across a range of pH conditions. Notably, adsorption was observed even when competing cations were present. Co-PBA emerges as a readily synthesized adsorbent, underscoring its efficacy in ammonium removal and selectivity toward ammonium.
In this study, a new type of composite material combined with carbonyl iron, a relatively strong ferromagnetic material, was prepared to overcome the current application limitations of Prussian blue, which is effective in removing radioactive cesium. The surface of the prepared composite was analyzed using SEM and XRD, and it was confirmed that nano-sized Prussian Blue was synthesized on the particle surface. In order to evaluate the cesium removal ability, 0.2 g of the composite prepared for raw cesium aquatic solution at a concentration of 5 μg was added and reacted, resulting in a cesium removal rate of 99.5 %. The complex follows Langmuir’s adsorption model and has a maximum adsorption amount (qe) of 79.3 mg/g. The Central Composite Design (CCD) of the Response Surface Method (RSM) was used to derive the optimal application conditions of the prepared composite. The optimal application conditions achieved using Response optimization appeared at a stirring speed of pH 7, 17.6 RPM. The composite manufactured through this research is a material that overcomes the Prussian Blue limit in powder form and is considered to be excellent economically and environmentally when applied to a cesium removal site.
Prussian blue is known as a superior material for selective adsorption of radioactive cesium ions; however, the separation of Prussian blue from aqueous suspension, due to particle size of around several tens of nanometers, is a hurdle that must be overcome. Therefore, this study aims to develop granule type adsorbent material containing Prussian blue in order to selectively adsorb and remove radioactive cesium in water. The surface of granular activated carbon was grafted using a covalent organic polymer (COP-19) in order to enhance Prussian blue immobilization. To maximize the degree of immobilization and minimize subsequent detachment of Prussian blue, several immobilization pathways were evaluated. As a result, the highest cesium adsorption performance was achieved when Prussian blue was synthesized in-situ without solid-liquid separation step during synthesis. The sample obtained under optimal conditions was further analyzed by scanning electron microscope-energy dispersive spectrometry, and it was confirmed that Prussian blue, which is about 9.7% of the total weight, was fixed on the surface of the activated carbon; this level of fixing represented a two-fold improvement compared to before COP-19 modification. In addition, an elution test was carried out to evaluate the stability of Prussian blue. Leaching of Prussian blue and cesium decreased by 1/2 and 1/3, respectively, compared to those levels before modification, showing increased stability due to COP-19 grafting. The Prussian blue based adsorbent material developed in this study is expected to be useful as a decontamination material to mitigate the release of radioactive materials.
프러시안 블루 유사체(Prussian Blue Analogue : PBA)는 3차원 구조와 기공을 갖는 금속-유 기골격체이며, 유기 리간드의 종류에 따라 다양한 구조를 갖는다. PBA는 바이오센서, 광학, 촉매, 수소 저장 장치 등의 분야에서 주목 받고 있으며 화학적 안정성을 가진 환경 친화적인 물질이다. 또한 다양 한 크기의 미세기공을 조정할 수 있어 흡착분야에서 많이 활용되고 있다. 본 연구는 수열합성법을 이용 하여 금속유기골격체인 Mn3[Fe(CN)6]2를 합성하였다. 전구체로 K4[Fe(CN)6]와 MnCl2를 사용하였고, 합 성된 물질은 소성하여 망간철산화물을 생성하였다. 실험 변수로 전구용액의 pH, 전구체의 몰농도, 반응 시간을 조절하여 입자의 크기와 형태에 대한 영향을 확인하였다. 합성된 다공체는 XRD, SEM, FT-IR, UV-Vis, TG/DTA에 의해 분석하였고, 여러 염료에 대한 흡착 특성을 평가하였다.