검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to predict return-to-work outcomes for workers injured in industrial accidents using a TabNet-RUSBoost hybrid model. The study analyzed data from 1,383 workers who had completed recuperation. Key predictors identified include length of recuperation, disability grade, occupation activity, self-efficacy, and socioeconomic status. The model effectively addresses class imbalance and demonstrates superior predictive performance. These findings underscore the importance of a holistic approach, incorporating both medical and psychosocial factors.
        4,000원
        2.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The application of the theoretical model to real assembly lines has been one of the biggest challenges for researchers and industrial engineers. There should be some realistic approach to achieve the conflicting objectives on real systems. Therefore, in this paper, a model is developed to synchronize a real system (A discrete event simulation model) with a theoretical model (An optimization model). This synchronization will enable the realistic optimization of systems. A job assignment model of the assembly line is formulated for the evaluation of proposed realistic optimization to achieve multiple conflicting objectives. The objectives, fluctuation in cycle time, throughput, labor cost, energy cost, teamwork and deviation in the skill level of operators have been modeled mathematically. To solve the formulated mathematical model, a multi-objective simulation integrated hybrid genetic algorithm (MO-SHGA) is proposed. In MO-SHGA each individual in each population acts as an input scenario of simulation. Also, it is very difficult to assign weights to the objective function in the traditional multi-objective GA because of pareto fronts. Therefore, we have proposed a probabilistic based linearization and multi-objective to single objective conversion method at population evolution phase. The performance of MO-SHGA is evaluated with the standard multi-objective genetic algorithm (MO-GA) with both deterministic and stochastic data settings. A case study of the goalkeeping gloves assembly line is also presented as a numerical example which is solved using MO-SHGA and MO-GA. The proposed research is useful for the development of synchronized human based assembly lines for real time monitoring, optimization, and control.
        4,000원
        4.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        플라스틱 사출 제품은 다양한 가전제품과 하이테크 제품에 널리 사용되고 있다. 그러나 현재의 치열한 경쟁적 비즈니스 환경에서 플라스틱 사출 제품 제조업자들은 고객을 만족시키면서 경쟁력을 얻기 위하여 다른 경쟁자들보다 먼저 새로운 제품을 시장에 출시하고 신제품의 개발기간을 줄이기 위한 노력을 할 여유가 부족하다. 따라서 무한경쟁의 시장에서 살아남기 위해서는 제조업자들은 시장 마켓 점유를 빠르게 올리는 것과 동시에 제품의 가격 경쟁력을 가져야 한다. 특징기반
        4,000원
        5.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 수학적 구조 모델과 인공신경망 기법을 상호 유기적으로 결합하여 구조물의 거동 데이터로부터 부재모델 또는 재료모델의 정확도를 높이는 정보기반 하이브리드 모델 업데이트 기법을 개발하였다. 유한요소와 같은 수학적 모델을 사용하여 구조물의 거동을 모사하기 위해서는 재료, 부재, 그리고 시스템의 정확한 모델링이 우선하여야 한다. 그러나 재 료, 부재의 각 레벨에서의 수학적인 모델은 이상화과정을 거치면서 중요한 특성을 생략하거나, 시스템 구성시 부재간의 상 호작용이나 경계조건의 단순화로 인해 유한요소 모델은 실제 구조물의 거동과 차이를 보이게 된다. 본 논문에서 제시된 하 이브리드 모델 업데이트 기법은 구조물의 거동과 수학적 모델의 해석결과 차이를 인공신경망 기법을 사용하여 보완함으로 써 시스템 모델의 정확도를 높일 수 있다. 이때 시스템의 거동 데이터로부터 부재 또는 재료모델을 개선할 수 있는 데이터 를 추출하여 부재 또는 재료모델을 개선한다. 제시된 기법은 보-기둥 접합부의 이력모델을 개선하는 것으로 검증하였으며, 복잡한 거동을 보이는 시스템 모델링에 광범위하게 사용될 수 있다.
        4,000원
        6.
        2009.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A study of fuelcell hybrid electronic vehicle for improve fuel consumption is used one wheel dynamic vehicle model and make a profound study of control strategy for cuts fuel consumption. For this reason there is a limit to study of real vehicle fuel consumption increase with weight transfer. This study perform a precision multi-body fuelcell hybrid electronic vehicle modeling using functional suspension model have fast analysis time. Verify a improve fuel consumption in urban driving cycle compare with one wheel dynamic model and demonstrate a power loss decrease by weight transfer is causes of fuel consumption rise.
        4,000원
        7.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 거더교 형식을 갖는 교량구조물의 격자 유한요소모델에 대한 모델개선을 위해 하이브리드 유전자 알고리즘에 기초한 유한요소 모델개선기법을 제안하였다. 하이브리드 유전자 알고리즘은 유전자 알고리즘과 심플렉스 최적화방법에 기초한 직접탐색기법으로 구성하였다. 제안된 기법에 적용할 수 있도록 고유진동수, 모드형상 및 정적 처짐에 대한 계측값과 유한요소해석 결과를 사용한 적합함수를 제시하고, 강성과 질량을 동시에 개선할 수 있도록 이들 세 가지 적합함수의 선형 조합 형태를 갖는 다중목적함수를 제시하였다. 제안된 방법은 2경간 연속 격자 유한요소모델의 수치예제와 단경간 플레이트 거더교에 대하여 검증하였다. 수치예제의 경우, 랜덤 노이즈를 고려한 계측오차의 영향을 수치해석적으로 평가하였다. 수치해석과 실험적 검증을 통해, 제안된 방법이 거더교 형식의 교량에 대한 유한요소 모델개선에 적합하고 효과적임을 검증하였다.
        4,200원
        8.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기존의 유한요소모델개선기법들은 측정에 의한 모달 데이터와 해석적으로 계산된 시스템 행렬로 구성된 수학적인 목적함수를 사용하거나 업데이팅 변수에 관한 모달 특성의 미분함수를 사용하여야만 한다. 따라서 교량구조물과 같은 복잡한 구조물에의 적용이 어렵고 역해석에 있어 해의 안정성 문제가 발생할 수 있다. 또한 개선된 모델이 물리적인 의미를 지니지 못할 수도 있다. 본 논문에서는 유전자알고리즘과 Welder-Mead의 심플렉스기법을 사용한 하이브리드 최적화 유한요소모델개선기법을 제안하였다. 하이브리드 최적화 기법의 성능을 검증하기 위해 3개의 국부최소값과 1개의 전체최소값을 갖는 Goldstein-Price 함수를 사용하여 비선형문제에 대한 적용성을 검토하였다. 또한 최적화목적함수의 영향을 검토하기 위해 10개의 자유도를 갖는 스프링-질량 모델을 사용하여 변수연구를 수행하였다. 최종적으로 수치해석을 통해서 질량과 강성을 동시에 개선하기 위한 최적화 목적함수를 제시하고, 제안된 하이브리드 최적화 기법이 유한요소모델개선을 위해 매우 효과적인 방법임을 입증하였다.
        4,000원
        9.
        2008.03 KCI 등재 서비스 종료(열람 제한)
        컨테이너항만의 물동량 예측은 항만의 개발 및 운영계획을 위해 매우 중요한 과정이다. 일반적으로 회귀분석, ARIMA모형 등의 통계적 방법론을 통해 많은 예측이 이뤄져왔다. 최근의 연구에서는 인공 신경망(ANN)기법을 통한 예측이 이뤄지고 있으며 기존의 선형적인 기법을 대신하고 있다. 본 연구에서는 선형모형과 비선형모형에 강점이 있는 ARIMA모형과 신경망모형을 결합해 보다 효과적인 예측 모형을 개발하고자 한다. 실제 항만의 과거 자료를 통해 모델의 적합성을 측정하였고 항만의 특성에 따라 모형의 적합성이 다양하게 나타났다.