태풍 내습 시 신속하고 정확한 해일고 예측은, 연안재해 대응에 필수적인 요소이다. 이러한 해일고의 예측을 위해서 기존에는 태풍예측정보를 수치모델에 적용하여 예측자료를 생산하는 것이 대부분이였다. 이러한 방법은 대용량의 컴퓨팅 자원과 시간이 소요된다는 단점이 있다. 최근에는 인공지능 기반으로 신속하게 예측자료를 생산하는 연구가 다양한 분야에서 진행되고 있으며, 본 연구에서는 인공지능 기반 해일고 예측을 수행하였다. 인공지능 적용을 위해서는 많은 수의 학습자료가 필요하게 되며, 기왕 발생태풍은 개수가 한정되어 있어 본 연구에서는 TCRM(Tropical Cyclone Risk Model)을 통하여 합성태풍을 생성하고, 이를 폭풍해일 모델에 적용하여 해일고 자료를 생성한 후, 학습자료로 활용하였다. 인공지능으로 예측한 해일고와 실제 발생 태풍에 대한 비교 결과, RMSE(Root Mean Square Error)는 0.09 ~ 0.30 m, CC(Correlation Coefficient)는 0.65 ~ 0.94, 최대 해일고의 ARE(Absolute Relative Error)는 1.0 ~ 52.5 %로 분석되었다. 특정 태풍/지점에 서는 다소 오차가 크게 나타나고 있으나, 향후 학습자료의 최적화 등을 통하여 정확도를 개선할 수 있을 것으로 기대된다.