지구의 기후 변화를 유도하고 제어하는 가장 중요한 역할을 하는 것은 해양의 해류이다. 황해는 수심이 동해 에 비해 매우 얕고, 다양한 바람과 조류, 강물의 유입, 동중국해에서의 해수 유입 등 외력의 영향으로 해수의 순환과 해류가 상당히 복잡하다. 황해난류는 겨울철 황해의 대표적인 해류로서 겨울철 황해와 동중국해 바람 변동성과 밀접한 관련이 있으며, 황해의 수온과 염분 분포에 큰 영향을 주어서 중등학교 교과서에서 중요하게 다루어질 필요성이 있다. 2015 개정 교육과정 기반 중등학교 과학 및 지구과학 교과서의 황해난류와 관련된 내용을 분석하였다. 또한 해류의 시 간 변동성에 대한 교사들의 인식을 조사하기 위해 중등학교 과학 교사들을 대상으로 설문조사를 실시하였다. 대부분의 교사들은 황해난류가 우리나라 서해안으로 연중 북상하고 있으며 일반적인 난류와 같이 여름철에 강하다는 잘못된 지 식을 가지고 있는 것으로 나타났다. 황해난류는 해류의 세기가 강한 계절변동성을 가지는 북한한류와 달리 해류 자체가 연중 항시 존재하지 않으며 겨울철에만 발생하는 해류이다. 이러한 교사들의 교과내용 지식에 대한 오류는 북한한류가 겨울철에 강하다는 오개념을 가지게 된 연유와 유사한 배경을 가지고 있었다. 따라서 본 연구에서는 황해난류에 대한 교과서 내용의 오류를 분석하여 제시하였다. 또한 학생들과 교사들의 데이터 리터러시 함양을 위하여 탐구활동에서 활 용할 수 있는 황해난류에 대한 수업 자료를 개발하였다. 황해 해수면 온도를 가시화할 수 있는 GUI 프로그램을 소개하 였고, WOA (World Ocean Atlas) 2018 해양 실측 수온 및 염분자료와 국립해양조사원에서 생성한 해양 수치모델 재분 석자료를 활용하여 수온과 염분의 공간 분포를 도시하는 자료를 개발하여 제시하였다. 이러한 해양 자료를 활용한 데이 터 시각화과정은 교사들의 오개념을 개선하고, 나아가 학생들과 교사들의 해양 리터러시뿐만 아니라 데이터 리터러시도 제고하는 계기가 될 것으로 기대된다.
해양의 파랑은 지구온난화 및 기후변화의 중요한 지표 중 하나로 인식되고 있다. 기후변화와 동아시아 몬순의 영향을 직접적으로 받는 황해 및 동중국해역에서의 유의파고 및 파향의 시공간 변동성 연구가 필요하다. 본 연구에서는 유럽중기예보센터(European Centre for Medium-Range Weather Forecasts; ECMWF)에서 제공하고 있는 5세대 모델 재 분석장 (ECMWF Reanalysis 5, ERA5) 자료를 활용하여 황해 및 동중국해역에서의 유의파고와 파향의 공간분포와 계 절 및 경년변동을 포함하는 시공간 변동성을 분석하였다. 모델 재분석자료를 활용한 유의파고와 파향의 변동성 분석에앞서 이어도 해양과학기지 관측 자료와의 비교를 통하여 정확도를 검증하였다. 평균 유의파고는 0.3-1.6 m의 범위를 보 였으며 북쪽에 비해 남쪽이 높고 연안에 비해 황해 중심부에서 높은 공간분포 특성을 보였다. 유의파고의 표준편차 또 한 평균과 유사한 양상을 나타내었다. 황해에서 유의파고와 파향은 뚜렷한 계절변동성을 보였다. 유의파고의 경우 전반 적으로 겨울철에 가장 높았으며 늦봄 또는 초여름에 가장 낮았다. 파향은 계절풍의 영향으로 겨울철에는 주로 남쪽으로 전파되었으며 여름철에는 북쪽으로 전파되는 특성이 나타났다. 유의파고의 계절변동은 여름철 태풍 등의 영향으로 해마 다 연 진폭의 큰 변화를 가진 강한 경년변동성을 보였다.
해수 속의 용존 유기·무기물과 플랑크톤 등의 상호 작용은 해수의 색과 광학적 특성을 결정한다. 동중국해에 위치한 이어도 해양과학기지(I-ORS) 주변의 해역은 서쪽으로 양자강 저염수, 남쪽으로 대마 난류에 영향을 받아 한반도 주변의 해수 순환과 광특성 변동 연구에 적합하다. 본 연구에서는 MODIS/Aqua로 관측한 위성 원격 반사도와 NOMAD 실측 원격 반사도를 이용하여 2016년 1월부터 2020년 12월까지 I-ORS 주변의 해수의 원격반사도를 스펙트 럼 특성에 따라 23가지의 유형으로 분류하였으며, 이어도 해양 과학기지 주변 해역(d ≤ 10 km)의 위성 일치점 자료 59,532개를 이용하여 연구 해역 수형의 계절 변동 특성을 제시하였다. 각 관측 지점에서의 원격 반사도 스펙트럼은 분 광 각도법을 이용하여 기준 스펙트럼과의 유사도를 비교함으로써 가장 근접한 기준 수형으로 분류 하였으며 분광 유사 도가 10o 이내일 때만 유의미하다고 판단하였다. 연구 기간내 I-ORS 주변 해역에서는 상대적으로 맑은 해역에서 잘 나 타나는 수형이 50% 이상으로 가장 빈번하게 관측되었다. 계절별 수형의 도수분포에서 여름과 겨울의 분포 양상이 다르 게 나타났고, 특히 여름에는 맑은 해수에서 주로 나타나는 7 이하의 수형이 주로 출현한 반면에 겨울에는 전체 4% 미 만으로 존재하였다. I-ORS 주변을 비롯한 동중국해의 수형의 공간 분포 특성을 고려할 때 I-ORS는 해수 수형의 전이 대에 위치한 것으로 판단된다. 본 연구는 한반도 연안에서의 수형 변동을 분석함으로써 해수의 광학 특성 이해을 이해 하고 인공위성 해색 변수의 정확도 향상을 위한 토대 마련에 기여할 것으로 기대된다.
급격한 기후 변화와 해양 온난화에 의해 지난 수십 년 동안 파고의 변동성이 증가하였다. 상위 1% (또는 5%) 파고와 같은 극한 파고는 국지적인 해역 뿐만 아니라 전 지구 대양에서도 평균 파고에 비해 현저하게 증가하였다. 1991년부터 인공위성 고도계를 활용하여 유의파고를 지속적으로 관측하고 있으며 통계적 기법을 기반으로 100년 빈도 유의파고를 추정하기에 비교적 충분한 자료가 축적되었다. 이어도 해양과학기지에서 유의파고 극값을 추정하기 위하여 2005년부터 2016년까지 위성 고도계 자료를 활용하였다. 대표적인 극값 분석 방법인 Initial distribution Method (IDM) 와 Peak over Threshold (PoT)를 위성 도고계 유의파고 관측 자료에 적용하고 이어도 해양과학기지에서 관측된 실측 자료와 비교하였다. 이어도 해양과학기 관측 자료에 IDM과 PoT 기법을 적용하여 추정된 100년 빈도 유의파고는 각각 8.17 m와 14.11 m이며, 인공위성 고도계 관측 자료를 활용하였을 때는 각각 9.21 m와 16.49 m이었다. 관측 최대값과의 비교 분석에서 IDM을 활용한 분석은 유의파고 극값을 과소추정 하는 경향을 보였다. 이는 IDM 보다 PoT 기법이 유 의파고의 극값을 적절하게 추정하고 있음을 의미한다. PoT 기법의 우수성은 높은 유의파고가 발생하는 태풍의 영향을 받는 이어도 해양과학기지 실측 자료를 활용한 결과에서도 증명되었다. 또한 PoT 기법으로 추정된 유의파고 극값의 안정성은 고도계 자료의 감소에 따라 저하될 수 있음을 확인하였다. 인공위성 고도계 자료를 활용하여 유의파고 극값 추정시 발생할 수 있는 한계점과 인공위성 자료를 검증할 수 있는 자료로써 이어도 해양과학기지 관측 자료의 중요성에 대하여 논의하였다.
태풍 내습 시 신속하고 정확한 해일고 예측은, 연안재해 대응에 필수적인 요소이다. 이러한 해일고의 예측을 위해서 기존에는 태풍예측정보를 수치모델에 적용하여 예측자료를 생산하는 것이 대부분이였다. 이러한 방법은 대용량의 컴퓨팅 자원과 시간이 소요된다는 단점이 있다. 최근에는 인공지능 기반으로 신속하게 예측자료를 생산하는 연구가 다양한 분야에서 진행되고 있으며, 본 연구에서는 인공지능 기반 해일고 예측을 수행하였다. 인공지능 적용을 위해서는 많은 수의 학습자료가 필요하게 되며, 기왕 발생태풍은 개수가 한정되어 있어 본 연구에서는 TCRM(Tropical Cyclone Risk Model)을 통하여 합성태풍을 생성하고, 이를 폭풍해일 모델에 적용하여 해일고 자료를 생성한 후, 학습자료로 활용하였다. 인공지능으로 예측한 해일고와 실제 발생 태풍에 대한 비교 결과, RMSE(Root Mean Square Error)는 0.09 ~ 0.30 m, CC(Correlation Coefficient)는 0.65 ~ 0.94, 최대 해일고의 ARE(Absolute Relative Error)는 1.0 ~ 52.5 %로 분석되었다. 특정 태풍/지점에 서는 다소 오차가 크게 나타나고 있으나, 향후 학습자료의 최적화 등을 통하여 정확도를 개선할 수 있을 것으로 기대된다.
염분은 해양의 밀도를 결정하는 중요한 변수이자 전지구 물의 순환을 나타내는 주요 인자 중 하나이다. 해상 염분 관측은 선박을 이용한 현장조사, Argo 플로트, 부이를 통한 조사가 주로 수행되어 왔다. 2009년 염분관측 인공위 성이 발사한 이래로, 위성 염분자료를 이용하여 전 지구 해역에서 표층 염분 관측이 가능해졌다. 그러나 위성 염분자료는 다양한 오차를 포함하기 때문에 연구 자료로 활용하기에 앞서 정확도 검증과정이 필요하다. 따라서 본 연구에서는 2015년 4월부터 2020년 8월까지 Soil Moisture Active Passive (SMAP) 위성 염분자료와 이어도 해양과학기지에서 제공하는 실측 염분자료 간의 정확도 및 오차특성을 비교 분석하였다. 총 314개의 일치점을 생산하였으며, 염분의 평균제 곱근오차 및 평균편차는 각각 1.79, 0.91 psu로 제시되었다. 전반적으로 위성 염분이 실측 염분보다 과대추정 되는 것으로 나타났다. 위성 염분의 오차는 계절, 표층 수온, 풍속과 같은 다양한 해양 환경적 요인에 의존성을 보였다. 여름철 위성 염분과 실측 염분의 차이는 0.18 psu 이하로 저수온보다는 고수온에서 위성 염분의 정확도가 증가하였다. 이는 센서의 민감도에 따른 결과였다. 마찬가지로 5 m s−1 이상 풍속 조건에서 오차가 줄어들었다. 본 연구결과는 연안에서 위성 염분자료를 활용할 경우에는 특정한 연구 목적에 적합한지 확인하여 제한적으로 사용하여야 함을 제시한다.
Oceanic current maps introduced in science and earth science textbooks can offer a valuable opportunity for students to learn about rapid climate change and the role of currents associated with the global energy balance problem. Previously developed oceanic current maps in middle and high school textbooks under the 2007 and 2009-revised national curriculum contained various errors in terms of scientific accuracy. To resolve these problems, marine experts have constructed a unified oceanographic map of the oceans surrounding the Korean Peninsula. Since 2010, this process has involved a continuous, long-term consultation procedure. By extensively gathering opinions and through verification process, a representative and scientific oceanic current map was eventually constructed. Based on this, the educational oceanic current maps, targeting the comprehension of middle and high school students, were developed. These maps were incorporated into middle and high school textbooks in accordance with the revised 2015 curriculum. In this study, we analyzed the oceanic current maps of five middle school science textbooks and six earth science textbooks that were published in high school in 2019. Although all the oceanic current maps in the textbooks were unified based on the proposed scientific oceanic current maps, there were problems such as the omission of certain oceanic currents or the use of a combination of dotted and solid lines. Moreover, several textbooks were found to be using incorrect names for oceanic currents. This study suggests that oceanic current maps, produced by integrating scientific knowledge, should be visually accurate and utilized appropriately to avoid students’ misconception.
지난 수십년 동안 인공위성을 통해 광범위하고 주기적으로 관측된 해수면온도 자료를 사용하여 일별 해수면온도 합성장이 생산되고 있으며 기후변화 감시와 해양 대기 예측 등 다양한 목적으로 활용되어 왔다. 본 연구에서는 지역적인 해역에서 최적화된 활용을 위해 한반도 주변해역에서 해수면온도 합성장 자료의 정확도 평가와 오차 특성 분석을 수행하였다. 2016년 1월부터 12월까지 이어도 해양과학기지 관측 수온 자료를 활용하여 4종의 다중 인공위성 기반 해수면온도 합성장 자료(OSTIA (Operational Sea Surface Temperature and Sea Ice Analysis), OISST (Optimum Interpolation Sea Surface Temperature), CMC (Canadian Meteorological Centre) 해수면온도 및 MURSST (Multi-scale Ultra-high Resolution Sea Surface Temperature))를 비교하여 각 해수면온도 합성장의 정확도를 평가하였다. 이어도 해양과학기지 수온 자료에 대하여 각 해수면온도 합성장은 최소 0.12oC (OISST)와 최대 0.55oC (MURSST)의 편차와 최소 0.77oC (CMC 해수면온도)와 최대 0.96oC (MURSST)의 평균 제곱근 오차를 나타냈다. 해수면온도 합성장 사이의 상호 비교 결과에서는 −0.38-0.38oC의 편차와 0.55-0.82oC의 평균 제곱근 오차의 범위를 보였으며 OSTIA와 CMC 해수 면온도 자료가 가장 작은 오차 특성을 보인 반면 OISST와 MURSST 자료는 가장 큰 오차 특성을 나타내었다. 이어도 해양과학기지와 가장 가까운 지점에서 해수면온도 합성장 자료를 추출하여 시계열을 비교한 결과에서는 이어도 해양과학기지 관측 수온 뿐만 아니라 모든 해수면온도 합성장 자료에서 뚜렷한 계절 변동을 보였으나 봄철 해수면온도 합성장은 이어도 해양과학기지 관측 수온에 비해 과대추정되는 경향이 나타났다.
지구온난화와 급속한 기후 변화는 북서 태평양 내 태풍의 특성에 오랫동안 영향을 미쳤고, 이로 인해 한반도 연안에서 치명적인 재해가 증가하고 있다. 마이크로파 센서의 일종인 Synthetic Aperature Radar (SAR)는 위성 광학 및 적외선 센서로는 바람을 구할 수 없는, 흐린 대기 조건인 태풍 주위에서 고해상도 바람장을 생산할 수 있다. SAR 자료 로부터 해상풍을 산출하기 위한 Geophysical Model Functions (GMFs)에는 풍향 입력이 필수적이며, 이는 태풍 중심을 정확히 추정하는 것에 기반해야 한다. 본 연구는 태풍 중심 탐지 방법의 문제점을 개선하고 이를 해상풍 산출에 반영하기 위하여, Sentinel-1A 영상을 이용해 태풍 중심을 추정하였다. 그 결과는 한국 및 일본 기상청이 제공한 태풍 경로 자료와 비교하여 검증하였고, Himawari-8 위성의 적외 영상도 활용하여 검증하였다. 태풍의 초기 중심 위치는 VH 편파를 이용해 설정하여 오차의 발생 가능성을 줄였다. 탐지된 중심은 한국 및 일본 기상청에서 제공하는 4개 태풍의 경로 자료와 평균 23.76 km의 차이를 보였다. Himawari-8 위성에서 추정된 태풍 중심에 비교했을 때 결과는 육지 근처에 위치하면서 58.73 km의 큰 차이를 보인 한 태풍을 제외하고는 평균 11.80 km의 공간 변이를 보였다. 이는 고해상도 SAR 영상이 태풍 중심을 추정하고 태풍 주위 해상풍 산출에 활용될 수 있음을 시사한다.