최근 해상 교통량 증가 및 연안 중심의 레저활동으로 인해 다양한 해양사고가 발생하고 있다. 그 중 선박사고는 인 명 및 재산 피해를 유발할 뿐만 아니라 기름 및 위험·유해물질 유출을 동반한 해양 오염사고로 이어질 가능성이 크다. 따 라서 해양사고 대비 및 대응을 위한 지속적인 선박 모니터링이 필요하다. 본 연구에서는 해상 선박 모니터링 체계 구축을 위한 초분광 원격탐사 기반의 항공 실험 수행 및 선박탐지 결과를 제시하였다. 한반도 서해 궁평항 인근 해역을 대상으로 초분광 항공관측을 수행하였으며, 사전에 다양한 선박 갑판에 대한 분광 라이브러리를 구축하였다. 탐지 방법으로는 spectral correlation similarity (SCS) 기법을 사용하였으며 초분광 영상과 선박 스펙트럼 사이의 공간 유사도 분포를 분석하 였다. 그 결과 초분광 영상에 존재하는 총 15개의 선박을 탐지하였으며 최대 유사도에 기반한 선박 갑판의 색상도 분류하 였다. 탐지 선박들은 고해상도 digital mapping camera (DMC) 영상과의 매칭을 통해 검증하였다. 본 연구는 해상 선박탐지 를 위한 항공 초분광 센서 활용의 기초로서 향후 원격탐사 기반의 선박 모니터링 시스템에 주요 역할을 할 것으로 기대된 다.
해수의 탁도는 수중의 부유 물질이나 생물에 의해 혼탁해지는 정도를 정량적으로 나타낸 변수로 연안 환경을 이해하는 데 중요한 해양 변수이다. 한반도의 서해안은 얕은 수심, 조류, 하천 유래 부유 퇴적물의 영향으로 광학적으로 강한 시공간 변동성을 가지고 있어서 인공위성 자료를 활용한 탁도 산출은 해양학적으로 다양한 활용 가능성을 가 진다. 본 연구에서는 경기만을 연구 해역으로 설정하고, 해수의 탁도 산출 알고리즘 개발을 위하여 2018년부터 2023년 7월까지 해양환경공단의 해양수질자동측정망 기반 현장 관측 탁도 자료와 Sentinel-2 인공위성의 MSI (Multi-Spectral Instrument) Level-2 자료를 사용하여 위성-현장 관측치 사이의 일치점 데이터베이스를 생산하였다. 이전의 다양한 탁도 산출식을 조사하여 정확도를 상호 비교하였고 경기만 해역에서 최적 파장대를 조사하고 분석하였다. 그 결과 녹색 밴드 (560 nm)를 기반으로 한 탁도 산출식이 0.08 NTU의 상대적으로 작은 평균 제곱근 오차를 보였다. 인공위성 광학 자료 를 기반으로 산출된 탁도는 해수의 광학적 특성과 연안 환경의 변동성을 이해하고 다양한 해상 활동에 도움을 줄 수 있을 것으로 기대된다.
해양산업시설에서는 많은 종류의 유해물질의 배출 가능성이 존재하기 때문에 이에 대한 체계적인 대응체계가 필요하다. 그 중 연속자동 측정이 가능하면서 ppb 수준의 낮은 검출하한 (limit of detection:LOD)를 갖는 센서 구현은 매우 중요하다. 이를 위해 본 연구에서 는 활성탄소(carbon black)와 Indium tin oxide (ITO) 나노입자를 혼합한 film의 표면저항의 변화를 이용한 고성능 센서 제안 및 구현을 위해 성능인자를 최적화하였다. 센서 구조는 접촉 면적과 전극 간격을 최적화하였다. 접촉 면적이 증가하면 감도, LOD 성능이 향상되었으며 60 mm2에서 최적화되었다. 또한, 전극 간격은 접촉 면적을 일정하게 유지한 상태에서 변화시켰으며 센서 응답은 전극 간격이 감소함에 따라 증가하는 것을 확인하였다. 마지막으로 센서 표면에서의 유해물질의 잔류시간 증가를 위해 화학흡착제를 적용하였다. 화학흡착제는 유해 물질을 선택적으로 흡수할 수 있는 polyester계를 선택하였다. 그 결과 농도가 증가함에 따라 응답이 선형적으로 증가하여 센서로 활용이 가능한 것을 확인하였다. 이러한 3가지의 방법을 통해 센서를 제작하였을 때 액상 유해물질을 기존 센서의 LOD(89.9 ppb)와 비교 10~40 ppb 정도의 낮은 농도를 검출할 수 있는 센서를 구현하였다.
국내외 해상 위험·유해물질(Hazardous and Noxious Substances, HNS) 물동량이 증가함에 따라 HNS 유출 사고의 위험성이 점차 높아지고 있다. 해상에 유출된 HNS는 해양생태계 파괴를 비롯한 해양환경 오염 및 인명피해를 유발하며, 화재 및 폭발 등을 동반한 2 차 사고 발생 가능성도 존재한다. 따라서 해상 HNS의 신속한 탐지와 각 물질 특성에 적합한 방제전략을 수립해야 한다. 본 연구에서 는 초분광 원격탐사에 기반한 지상 HNS 유출 실험 과정 및 탐지 알고리즘 적용 결과를 제시하고자 한다. 이를 위해 프랑스 브레스트 지역의 야외 풀장에서 스티렌을 유출한 후 초분광 센서를 활용한 동시 관측을 수행하였다. 순수 스티렌 및 해수 스펙트럼은 주성분 분 석(principal component analysis, PCA) 및 N-Findr 기법을 적용하여 추출하였으며, 또한 spectral distance similarity (SDS), spectral correlation similarity (SCS), spectral similarity value (SSV), spectral angle mapper (SAM)을 포함한 분광정합 기법을 적용하여 초분광 영상 내 화소들을 스티렌 및 해수로 분류하였다. 그 결과 SDS 및 SSV 기법이 우수한 스티렌 탐지 결과를 보여주었으며, 스티렌 총 면적은 약 1.03 m2로 추정되었다. 본 연구는 해상 HNS 모니터링에 주요 역할을 할 것으로 기대된다.
해수 속의 용존 유기·무기물과 플랑크톤 등의 상호 작용은 해수의 색과 광학적 특성을 결정한다. 동중국해에 위치한 이어도 해양과학기지(I-ORS) 주변의 해역은 서쪽으로 양자강 저염수, 남쪽으로 대마 난류에 영향을 받아 한반도 주변의 해수 순환과 광특성 변동 연구에 적합하다. 본 연구에서는 MODIS/Aqua로 관측한 위성 원격 반사도와 NOMAD 실측 원격 반사도를 이용하여 2016년 1월부터 2020년 12월까지 I-ORS 주변의 해수의 원격반사도를 스펙트 럼 특성에 따라 23가지의 유형으로 분류하였으며, 이어도 해양 과학기지 주변 해역(d ≤ 10 km)의 위성 일치점 자료 59,532개를 이용하여 연구 해역 수형의 계절 변동 특성을 제시하였다. 각 관측 지점에서의 원격 반사도 스펙트럼은 분 광 각도법을 이용하여 기준 스펙트럼과의 유사도를 비교함으로써 가장 근접한 기준 수형으로 분류 하였으며 분광 유사 도가 10o 이내일 때만 유의미하다고 판단하였다. 연구 기간내 I-ORS 주변 해역에서는 상대적으로 맑은 해역에서 잘 나 타나는 수형이 50% 이상으로 가장 빈번하게 관측되었다. 계절별 수형의 도수분포에서 여름과 겨울의 분포 양상이 다르 게 나타났고, 특히 여름에는 맑은 해수에서 주로 나타나는 7 이하의 수형이 주로 출현한 반면에 겨울에는 전체 4% 미 만으로 존재하였다. I-ORS 주변을 비롯한 동중국해의 수형의 공간 분포 특성을 고려할 때 I-ORS는 해수 수형의 전이 대에 위치한 것으로 판단된다. 본 연구는 한반도 연안에서의 수형 변동을 분석함으로써 해수의 광학 특성 이해을 이해 하고 인공위성 해색 변수의 정확도 향상을 위한 토대 마련에 기여할 것으로 기대된다.
국내외 해상 위험·유해물질(HNS, Hazardous and Noxious Substances) 물동량 증가와 함께 HNS 유출 사고가 빈번히 발생하고 있다. HNS는 전 세계적으로 약 6,000여 종으로 대부분 유독한 성질을 가지므로 이러한 유출 사고 발생은 해양 생태계 파괴를 비롯하여 폭발 및 화재 등으로 인한 인명 및 재산피해를 유발한다. 따라서 해상 HNS 유출 사고를 대비하여 파장에 따른 HNS 분광 라이브러리 구축 및 탐지 알고리즘을 개발해야 한다. 본 연구에서는 프랑스 현지에서 지상 HNS 유출 실험을 진행하였다. 초분광센서 관측을 통해 파장에 따른 톨루엔 라이브러리 스펙트럼을 구축하였으며, 분광혼합 알고리즘을 활용하여 초분광 HNS를 탐지하였다. 전처리 과정으로 주성분 분석을 적용하여 노이즈 제거 및 차원 압축을 수행하였으며, N-FINDR 기법을 통해 영상을 대표하는 톨루엔과 해수의 엔드멤버 스펙트럼을 추출하였다. 스펙트럼 기반의 톨루엔 및 해수의 점유비율을 계산함으로써 모든 픽셀의 HNS 탐지 정확도를 확률로 제시하였다. 최대 탐지 정확도를 가지는 점유비율 선정을 위해 418.15 nm 파장의 복사도 영상과 비교하였으며, 그 결과 약 42%의 비율에 서 99% 이상의 정확도를 나타내었다. 해상 HNS 유출은 높은 위험성으로 인해 사람이 쉽게 접근할 수 없는 한계를 지닌다. 본 HNS 실험과정 및 탐지 결과는 초분광 원격탐사에 기반한 HNS 오염 해역 추정에 도움이 될 것이다.
염분은 해양의 밀도를 결정하는 중요한 변수이자 전지구 물의 순환을 나타내는 주요 인자 중 하나이다. 해상 염분 관측은 선박을 이용한 현장조사, Argo 플로트, 부이를 통한 조사가 주로 수행되어 왔다. 2009년 염분관측 인공위 성이 발사한 이래로, 위성 염분자료를 이용하여 전 지구 해역에서 표층 염분 관측이 가능해졌다. 그러나 위성 염분자료는 다양한 오차를 포함하기 때문에 연구 자료로 활용하기에 앞서 정확도 검증과정이 필요하다. 따라서 본 연구에서는 2015년 4월부터 2020년 8월까지 Soil Moisture Active Passive (SMAP) 위성 염분자료와 이어도 해양과학기지에서 제공하는 실측 염분자료 간의 정확도 및 오차특성을 비교 분석하였다. 총 314개의 일치점을 생산하였으며, 염분의 평균제 곱근오차 및 평균편차는 각각 1.79, 0.91 psu로 제시되었다. 전반적으로 위성 염분이 실측 염분보다 과대추정 되는 것으로 나타났다. 위성 염분의 오차는 계절, 표층 수온, 풍속과 같은 다양한 해양 환경적 요인에 의존성을 보였다. 여름철 위성 염분과 실측 염분의 차이는 0.18 psu 이하로 저수온보다는 고수온에서 위성 염분의 정확도가 증가하였다. 이는 센서의 민감도에 따른 결과였다. 마찬가지로 5 m s−1 이상 풍속 조건에서 오차가 줄어들었다. 본 연구결과는 연안에서 위성 염분자료를 활용할 경우에는 특정한 연구 목적에 적합한지 확인하여 제한적으로 사용하여야 함을 제시한다.
Oceanic current maps introduced in science and earth science textbooks can offer a valuable opportunity for students to learn about rapid climate change and the role of currents associated with the global energy balance problem. Previously developed oceanic current maps in middle and high school textbooks under the 2007 and 2009-revised national curriculum contained various errors in terms of scientific accuracy. To resolve these problems, marine experts have constructed a unified oceanographic map of the oceans surrounding the Korean Peninsula. Since 2010, this process has involved a continuous, long-term consultation procedure. By extensively gathering opinions and through verification process, a representative and scientific oceanic current map was eventually constructed. Based on this, the educational oceanic current maps, targeting the comprehension of middle and high school students, were developed. These maps were incorporated into middle and high school textbooks in accordance with the revised 2015 curriculum. In this study, we analyzed the oceanic current maps of five middle school science textbooks and six earth science textbooks that were published in high school in 2019. Although all the oceanic current maps in the textbooks were unified based on the proposed scientific oceanic current maps, there were problems such as the omission of certain oceanic currents or the use of a combination of dotted and solid lines. Moreover, several textbooks were found to be using incorrect names for oceanic currents. This study suggests that oceanic current maps, produced by integrating scientific knowledge, should be visually accurate and utilized appropriately to avoid students’ misconception.
국제 해상교통량 및 물동량이 증가함에 따라 한반도 주변해역의 선박유동량도 늘어나고 있으며 이에 따라 크고 작은 항구가 위치하고 있는 남해에서의 해양 사고도 꾸준히 발생하고 있다. 특히 선박간의 충돌 및 침몰 사고는 인적 및 물적 피해뿐만 아니라 해양환경오염을 유발하기 때문에 광역의 범위를 고해상도로 볼 수 있는 인공위성을 통한 신속한 선박탐지가 필요하다. 본 연구에서는 광학 인공위성 아리랑 2호 관측자료를 활용하여 광양만 인근해역의 각 채널 별 반사도 값을 비교 분석하여 새로운 선박탐지지수를 제시하였다. 선박 분류를 위해 그 선박탐지지수의 역치를 0.1로 설정하였고, RGB 합성영상과 비교하였을 때 대다수의 선박을 탐지하였음을 보여주었다. 연구해역에 포함되어 있는 큰 규모의 선박을 선정 후, 선박 주변의 공간적 반사도 분포를 분석하였다. 그 결과 선박 북서방향에 위치한 균일한 형태의 선박그림자를 확인할 수 있었다. 이는 태양의 위치가 남동방향에 위치하고 있음을 나타내고 있으며, 실제 위성영상이 촬영된 시기의 방위각은 144.80o로 영상내의 그림자의 위치를 통해 태양의 방위각을 유추할 수 있다. 그림자의 반사도는 주변 바다 및 선박에 비해 낮은 0.005 값을 나타냈고, 선수 및 선미에 따라 높이차가 달라짐을 보였다. 이는 선박의 갑판 및 구조물의 높이를 반영한 것으로 판단된다. 본 연구 결과는 연안 해상사고 발생 시 실종선박 수색기술에 고해상도 광학 인공위성 영상이 활용될 수 있음에 의의가 있다.
한반도 주변 해상사고가 증가함에 따라 원격탐사 자료를 활용한 선박탐지 연구의 중요성이 점점 더 강조되고 있다. 이 연구는 고해상도 광학영상에 의존하는 기존 선박탐지 분야에 수백 개 채널의 분광정보를 포함하는 초분광영상을 활용하여 새로운 선박탐지 알고리즘 제시하였다. 두 차례의 현장관측을 통해 측정한 선박 선체의 반사 스펙트럼과 AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) 초분광센서 영상의 선박 및 해수 반사 스펙트럼 간의 분광정합 기법을 적용하였다. 총 다섯 개의 탐지 알고리즘 spectral distance similarity (SDS), spectral correlation similarity (SCS), spectral similarity value (SSV), spectral angle mapper (SAM), spectral information divergence (SID)를 사용하였다. SDS는 선박 일부가 해수로 탐지되는 오차를 나타내었고, SAM은 선박과 해수 사이에 약 1.8배의 차이를 나타내어 명확한 분류 결과를 보여주었다. 이와 더불어 본 연구에서는 각 기법의 최적 임계값을 제시하여 초분광 영상에 포함되어 있는 선박을 분류하였으며 그 결과 SAM, SID가 다른 탐지 알고리즘에 비해 우수한 선박탐지 능력을 보여주었다.