해양산업시설에서는 많은 종류의 유해물질의 배출 가능성이 존재하기 때문에 이에 대한 체계적인 대응체계가 필요하다. 그 중 연속자동 측정이 가능하면서 ppb 수준의 낮은 검출하한 (limit of detection:LOD)를 갖는 센서 구현은 매우 중요하다. 이를 위해 본 연구에서 는 활성탄소(carbon black)와 Indium tin oxide (ITO) 나노입자를 혼합한 film의 표면저항의 변화를 이용한 고성능 센서 제안 및 구현을 위해 성능인자를 최적화하였다. 센서 구조는 접촉 면적과 전극 간격을 최적화하였다. 접촉 면적이 증가하면 감도, LOD 성능이 향상되었으며 60 mm2에서 최적화되었다. 또한, 전극 간격은 접촉 면적을 일정하게 유지한 상태에서 변화시켰으며 센서 응답은 전극 간격이 감소함에 따라 증가하는 것을 확인하였다. 마지막으로 센서 표면에서의 유해물질의 잔류시간 증가를 위해 화학흡착제를 적용하였다. 화학흡착제는 유해 물질을 선택적으로 흡수할 수 있는 polyester계를 선택하였다. 그 결과 농도가 증가함에 따라 응답이 선형적으로 증가하여 센서로 활용이 가능한 것을 확인하였다. 이러한 3가지의 방법을 통해 센서를 제작하였을 때 액상 유해물질을 기존 센서의 LOD(89.9 ppb)와 비교 10~40 ppb 정도의 낮은 농도를 검출할 수 있는 센서를 구현하였다.
Owing to the potential release of various types of noxious substances from marine industrial facilities, there is a need for a systematic response system. The implementation of a sensor capable of continuous automatic measurement with a low limit of detection (LOD) at the ppb level is significant. In this study, performance factors were optimized to propose and develop a high-performance sensor that utilizes changes in surface resistance of a film blended with activated carbon (carbon black) and indium tin oxide nanoparticles. Regarding the optimization of the sensor structure, the contact area and electrode spacing were carefully adjusted. Sensitivity and LOD performance were enhanced with an increase in the contact area, reaching an optimal value at 60 mm². Additionally, electrode spacing was manipulated while keeping the contact area constant, revealing that sensor response increased as electrode spacing decreased. To prolong the presence of noxious substances on the sensor surface, a chemisorbent was applied. A polyester-based material, capable of selectively absorbing harmful chemicals, was chosen as the chemical adsorbent. The experimental results demonstrated a linear increase in sensor response as the concentration of noxious substances rose. This confirmed the viability of using the sensor. By employing these three methods, a sensor capable of detecting low concentrations ranging from 10 - 40 ppb was developed, surpassing the LOD (89.9 ppb) of the previous liquid noxious substances sensor.