검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 75

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        By developing a high-quality plexiglass sign using LED, it is possible to respond to international competitiveness and effectively cope with market expansion measures. The degree of inhalation of the fine dust blown by the air nozzle was tested so that it was not blown into the air. As a result of this test, the acrylic absorption rate was 82%, an increase of 20% from 60% before improvement, and the working environment was improved. With the development of the dust extraction device for the acrylic processing machine in this study, the suction and removal of acrylic fragments or dust is smoothly performed, resulting in a cleaner, more hygienic and improved safety through the improvement of the working environment. As a result of comparing the amount of burr generated in the plexiglass material and comparing the degree of test performance for reaching 24,000 rpm, it reached 24,000rpm.
        4,000원
        2.
        2023.11 구독 인증기관·개인회원 무료
        On a global scale, the storage of spent nuclear fuel (SNF) within nuclear power plants (NPP) has become an important research topic due to limited space caused by approaching capacity saturation. SNF have e been collected over decades of NPP operation, coming up to capacity limitation. In case of Korea, every reactor except Saeul 1 and 2 has reached a SNF storage saturation rate of over 75%. One of the most studied methods for enhancing storage capacity efficiency involves increasing storage density using racks with neutron absorbers. Neutron absorbers like borated stainless steel (BSS) are utilized to manage the reactivity of densely stored SNF. However, major challenges of applying BSS are manufacturing hardness from heterogenous microstructure and mechanical property degradation from helium bubble formation. This study suggests that innovative fabrication methods of 3D printing can be good candidate for easier fabrication and better structural integrity of BSS. Directed energy deposition (DED), one of the 3D printing methods have become major candidate method for various alloys. It deposits alloy powder on base melt surface by high intensity laser, similar with welding process. Powder manufacturing is already demonstrated superior performance compared to casting in ASTM-A887, such as increased mechanical properties, owing to its well distributed chemistry of alloy. Moreover, as its original microstructural property, the formation of micro-pores through DED could lead to long-term performance improvements by capturing helium generated from the neutron absorption of boron. The potential for fabricating complex structure is also among the advantages of DED-produced neutron absorbers. Expected challenge on DED application on BSS is lack of printing condition data, because the 3D printing process have to be kept very careful variables of thermal intensity, powder flux and etc. These processes may get through much of trial & error for initial condition approaching. Nonetheless, as a recommendation of improved neutron absorber for efficient SNF pool storage, the concept of 3D printed BSS stands out as an intriguing avenue for research.
        3.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the abnormal noise phenomenon generated intermittently in the shock absorber of the combat armored vehicle was approached from the side of the squeak joint to solve the phenomenon. In order to identify the cause of the noise, the factors causing friction in the shock absorber were checked from the viewpoint of problem product analysis, process, and design. As an improvement plan, by improving the non-lubricated section in the nitrogen chamber, the operating noise was reduced to a level lower than that of a general automobile engine along with the elimination of noise. Considering that this is a combat vehicle, it is judged that it has been improved so as not to affect the survivability and health of the crew during equipment operation. Through the improvement of this study, it is expected to prevent power loss and improve the emotional quality of our soldier.
        4,000원
        4.
        2023.05 구독 인증기관·개인회원 무료
        Al-B4C neutron absorbers are currently widely used to maintain the subcriticality of both wet and dry storage facilities of spent nuclear fuel (SNF), thus long-term and high-temperature material integrity of the absorbers has to be guaranteed for the expected operation periods of those facilities. Surface corrosion solely has been the main issue for the absorber performance and safety; however, the possibility of irradiation-assisted degradation has been recently suggested from an investigation on Al-B4C surveillance coupons used in a Korean spent nuclear fuel pool (SFP). Larger radiation damage than expectation was speculated to be induced from 10B(n, α)7Li reactions, which emit about a MeV α-particles and Li ions. In this study, we experimentally emulated the radiation damage accumulated in an Al-B4C neutron absorber utilizing heavy-ion accelerator. The absorber specimens were irradiated with He ions at various estimated system temperatures for a model SNF storage facility (room temperature, 150, 270, and 400°C). Through the in-situ heated ion irradiation, three exponentially increasing level of radiation damages (0.01, 0.1, and 1 dpa or displacement per atom) were achieved to compare differential gas bubble formation at near surface of the absorber, which could cause premature absorber corrosion and subsequential 10B loss in an SNF storage system. An extremely high radiation damage (10 dpa), which is unlikely achievable during a dry storage period, was also emulated through high temperature irradiation (350°C) to further test the radiation resistance of the absorber, conservatively. The irradiated specimens were characterized using HR-TEM and the average size and number density of radiation-induced He bubbles were measured from the obtained bright field (BF) TEM micrographs. Measured helium bubble sizes tend to increase with increasing system (or irradiation) temperature while decrease in their number density. Helium bubbles were found from even the lowest radiation damage specimens (0.01 dpa). Bubble coalescence was significant at grain boundaries and the irradiated specimen morphology was particularly similar with the bubble morphology observed at the interface between aluminum alloy matrix and B4C particle of the surveillance coupons. These characterized irradiated specimens will be used for the corrosion test with high-temperature humid gas to further study the irradiation-assisted degradation mechanism of the absorber in dry SNF storage system.
        5.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the effect of a dynamic vibration absorber to suppress the response of a base excitation vibration system composed of a cubic nonlinear spring and a friction damper is investigated. And the dynamic absorber consists of a linear spring and a viscose damper. The mathematical models of these systems are governed by second order nonlinear ordinary differential equations. The response characteristics of the system are analyzed using the slowly changing phase and amplitude(SCPA) method, which is one of the averaging methods. As a function of the friction force ratio, It was obtained the locking frequency at which the relative motion starts was obtained, and the regions where the locking occurred. The displacement transmissibility was investigated according to the change of the design parameter, and the optimal design parameters could be found to minimize the displacement transmissibility.
        4,000원
        6.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the noise reduction effect of the steam vent silencer was investigated by performing a transient flow analysis applying the Loss Model, a porous flow analysis model, and calculating the noise intensity from the pressure fluctuation according to the time change. As a result of flow analysis, it was confirmed that the noise intensity decreased as the number of diffusers and the number of splitters made of foamed aluminum increased. In the case of three-stage diffusers, the noise intensity decreased by up to 33.4 dB when six foamed aluminum with a thickness of 150mm were installed.
        4,000원
        7.
        2022.10 구독 인증기관·개인회원 무료
        In Korea, borated stainless steel (BSS) is used as spent fuel pool (SFP) storage rack to maintain nuclear criticality of spent fuels. As number of nuclear power plants and corresponding number of spent fuels increased, density in SFP storage rack also increased. In this regard, maintain subcriticality of spent nuclear fuels was raised as an issue and BSS was selected as structural material and neutron absorber for high density storage rack. Because it is difficult to replace storage rack, corrosion resistance and neutron absorbency are required for long period. BSS is based on stainless steel 304 and it is specified in the ASTM A887-89 standard depending on the boron concentration from 304B (0.20-0.29% B) to 304B7 (1.75-2.25% B). Due to low solubility of boron in austenitic stainless steel, metallic borides such as (Fe, Cr)2B are formed as secondary phase metallic borides could make Cr depletion near it which could decrease the corrosion resistance of material. In this paper, long-term corrosion behavior of BSS and its oxide microstructures are investigated through accelerated corrosion experiment in simulated SFP condition. Because corrosion rate of austenitic stainless steel is known to be dependent on the Arrhenius equation, a function of temperature, corrosion experiment is conducted by increasing the experimental temperature. Detail microstructural analysis was conducted with scanning electron microscope, transmission electron microscope and energy dispersive spectrometer. After oxidation, hematite structure oxide film is formed and pitting corrosions occur on the surface of specimens. Most of pitting corrosions are found at the substrate surface because corrosion resistance of substrate, which has low Cr content, is relatively low. Also, oxidation reaction of B in the secondary phase has the lowest Gibbs free energy compared to other elements. Furthermore, oxidation of Cr has low Gibbs free energy which means that oxidation of B and Cr could be faster than other elements. Thus, the long-term corrosion might affect to boron content and the neutron absorption ability of the material.
        8.
        2021.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cu2ZnSn(S,Se)4 (CZTSSe) based thin-film solar cells have attracted growing attention because of their earthabundant and non-toxic elements. However, because of their large open-circuit voltage (Voc)-deficit, CZTSSe solar cells exhibit poor device performance compared to well-established Cu(In,Ga)(S,Se)2 (CIGS) and CdTe based solar cells. One of the main causes of this large Voc-deficit is poor absorber properties for example, high band tailing properties, defects, secondary phases, carrier recombination, etc. In particular, the fabrication of absorbers using physical methods results in poor surface morphology, such as pin-holes and voids. To overcome this problem and form large and homogeneous CZTSSe grains, CZTSSe based absorber layers are prepared by a sputtering technique with different RTA conditions. The temperature is varied from 510 oC to 540 oC during the rapid thermal annealing (RTA) process. Further, CZTSSe thin films are examined with X-ray diffraction, X-ray fluorescence, Raman spectroscopy, IPCE, Energy dispersive spectroscopy and Scanning electron microscopy techniques. The present work shows that Cu-based secondary phase formation can be suppressed in the CZTSSe absorber layer at an optimum RTA condition.
        4,000원
        10.
        2020.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        After nuclear power plants are permanently shut down and decommissioned, the remaining irradiated metal components such as stainless steel, carbon steel, and Inconel can be used as neutron absorber. This study investigates the possibility of reusing these metal components as neutron absorber materials, that is burnable poison. The absorption cross section of the irradiated metals did not lose their chemical properties and performance even if they were irradiated over 40-50 years in the NPPs. To examine the absorption capability of the waste metals, the lattice calculations of WH 17×17 fuel assembly were analyzed. From the results, Inconel-718 significantly hold-down fuel assembly excess reactivity compared to stainless steel 304 and carbon steel because Inconel-718 contains a small amount of boron nuclide. From the results, a 20wt% impurity of boron in irradiated Inconel-718 enhances the excess reactivity suppression. The application of irradiated Inconel-718 as a burnable absorber for SMR core was investigated. The irradiated Inconel-718 impurity with 20wt% of boron content can maintain and suppress the whole core reactivity. We emphasize that the irradiated metal components can be used as burnable absorber materials to control the reactivity of commercial reactor power and small modular reactors.
        4,900원
        11.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 충격을 줄이기 위해 효과적인 충격완충장치를 구성하는 방법을 제안했다. 기존의 충격완충장치는 폴리에틸렌으로만 만들어졌지만, 새로운 충격완충장치는 외측에는 폴리에틸렌, 내측에는 고밀도 재료로 구성하였다. 충격은 내측과 외측 물질 사이의 밀도 차이가 더 클 때 줄어들었다. 2층 구조의 외측으로 설계하기 위해 알루미늄, 티타늄, 구리를 선택하였다. 가장 밀도가 높은 구리에서는 충격 감소가 가장 좋았으며, 기존 충격완충장치보다 최대 감가속도는 43%, 충격량은 51% 감소하였다. 4층, 6층 충격완충장치의 경우, 충격량은 줄였지만, 최대 감가속도는 증가하였다. 신관은 가장 큰 충격으로부터 살아남아야 하며 나머지 충격파는 임계값을 초과하지 않으므로, 본 논문은 폴리에틸렌-구리를 사용한 2층 구조용 충격완충장치를 제안하였다.
        4,000원
        12.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the automotive industry, the platinum titanium anodes (Pt/Ti anode) play a significant role in electroplating of chromium coating on the vehicle’s shock absorber piston rod. In this paper, the structure of Pt/Ti anode was designed to obtain high quality and save time for the electroplating process. The structure of anode was designed in 2D & 3D modeling and analyzed by CATIA and ABAQUS program, respectively. The structural modeling of the anode was analyzed and carried out using a finite element method (FEM) by applied various loads. The manufacture anodes were installed in an electroplating bath in order to test the efficiency of chromium coating on shock absorber piston rod and safety of anode structure. The results presented indicate that the structural analysis is safe after applied loads due to the allowable stress is higher than the maximum equivalent stress about 4 times, and the chromium coating test obtained high-efficiency results.
        4,000원
        15.
        2019.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Information and communication technologies are developing rapidly as IC chip size becomes smaller and information processing becomes faster. With this development, digital circuit technology is being widely applied to mobile phones, wireless LANs, mobile terminals, and digital communications, in which high frequency range of GHz is used. In highdensity electronic circuits, issues of noise and EMC(Electro-Magnetic Compatibility) arising from cross talk between interconnects or devices should be solved. In this study, sheet-type electromagnetic wave absorbers that cause electromagnetic wave attenuation are fabricated using composites based on soft magnetic metal powder and silicon rubber to solve the problem of electromagnetic waves generated in wireless communication products operating at the frequency range of 2.4 GHz. Sendust(Fe-Si-Al) and carbonyl iron(Fe-C) were used as soft magnetic metals, and their concentrations and sheet thicknesses were varied. Using soft magnetic metal powder, a sheet is fabricated to exhibit maximum electromagnetic attenuation in the target frequency band, and a value of 34.2dB(99.9 % absorption) is achieved at the target frequency.
        4,000원
        16.
        2019.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The recent development of information and communication technologies brings new changes to automobile traffic systems. The most typical example is the advancement of dedicated short range communication(DSRC). DSRC mainly consists of an intelligent transportation system(ITS), an electronic toll collection system(ETCS) and an advanced traveler information system(ATIS). These wireless communications often cause unnecessary electromagnetic waves, and these electromagnetic waves, in turn, cause frequent system malfunction. To solve this problem, an absorber of electromagnetic waves is suggested. In this research, various materials, such as powdered metal and iron oxides, are used to test the possibility for an effective absorption of the unnecessary electromagnetic waves. The various metal powders are made into a thin sheet form by compositing through processing. The electromagnetic characteristics(complex permittivity, complex permeability) of the fabricated sheet are measured. As a result, we achieve –6.5 dB at 940 MHz(77.6 % absorption rate) with a 1.0 mm-thickness electromagnet wave absorber, and –9.5 dB at 940 MHz(88.8 % absorption rate) with a 2.0 mm-thickness absorber.
        4,000원
        17.
        2019.05 구독 인증기관 무료, 개인회원 유료
        As the desires of market get various, so its demand fluctuates frequently. The only companies that flexibly meets fluctuating demands can survive in the fierce market competition. In this study, we deal with the development of jig system for manual welding processes that can cause flexible actions and uniform quality in the manufacturing shock absorber base assembly of automobile. For this we review the processes of design and development through analysis of the technology and the customer that are patents analysis, customer desires analysis, functional analysis and so on. Moreover, we review the relevant indicators for improvement of productivity that are production capacity, cycle time and error rates etc. as the technology is developed.
        3,000원
        18.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we study the applicability of Tuned Mass Damper(TMD) to improve seismic performance of piping system under earthquake loading. For this purpose, a mode analysis of the target pipeline is performed, and TMD installation locations are selected as important modes with relatively large mass participation ratio in each direction. In order to design the TMD at selected positions, each corresponding mode is replaced with a SDOF damped model, and accordingly the corresponding pipeline is converted into a 2-DOF system by considering the TMD as a SDOF damped model. Then, optimal design values of the TMD, which can minimize the dynamic amplification factor of the transformed 2-DOF system, are derived through GA optimization method. The proposed TMD design values are applied to the pipeline numerical model to analyze seismic performance with and without TMD installation. As a result of numerical analyses, it is confirmed that the directional acceleration responses, the maximum normal stresses and directional reaction forces of the pipeline system are reduced, quite a lot. The results of this study are expected to be used as basic information with respect to the improvement of the seismic performance of the piping system in the future.
        4,200원
        1 2 3 4