검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2010.03 KCI 등재 서비스 종료(열람 제한)
        Actual evapotranspiration (AET) in the Suyeong-gu was estimated and correlations between AET and meteorological factors were analyzed. The study area was Suyeong-gu lay at the east longitude 129° 05′40″∼ 129° 08′08″ and north latitude 35° 07′59″∼ 35° 11′01″. The Kumryun mountain, the Bae mountain, the Suyeong river and the Suyeong bay are located on west, north, northeaster and south side in the study area, respectively. AET was estimated using precipitation (P), potential evapotranspiration (PET) and plant-available water coefficient. Meteorological factors to estimate PET were air temperature, dewpoint temperature, atmospheric pressure, duration of sunshine and mean wind speed (MWS). PET and AET were estimated by a method of Allen et al. (1998) and Zhang et al. (2001), respectively. PET was the highest value (564.45 mm/yr) in 2002 year, while it was the lowest value (449.95 mm/yr) in 2003 year. AET was estimated highest value (554.14 mm/yr) in 2002 year and lowest value (427.91 mm/yr) in 2003 year. Variations of PET and AET were similar. The linear regression function of AET as PET using monthly data was and coefficient of determination was high, 0.75. In order to analyze relationship between the evapotranspiration and meteorological factors, correlation analysis using monthly data were accomplished. Correlation coefficient of AET-PET was 0.96 high, but they of AET-P and PET-P were very low. Correlation coefficients of AET-MWS and PET-MWS were 0.67 and 0.73, respectively. Thus, correlation between evapotranspiration and MWS was the highest among meteorological factors in Suyong-gu. This means that meteorological factor to powerfully effect for the variation of evapotranspiration was MWS. The linear regression function of AET as MWS was and coefficient of determination was 0.54. The linear regression function of PET as MWS was and coefficient of determination was 0.45.
        2.
        2008.10 KCI 등재 서비스 종료(열람 제한)
        The chemical and meteorological effects on the concentration variations of air pollutants (O3 and its precursors) were evaluated based on ground observation data in coastal and inland regions, Busan during springs and summers of 2005-2006. For the purpose of this study, study areas were classified into 5 categories: coastal area (CA), industrial area (IA), downtown area (DA), residential area (RA), and suburban area (SA). Two sites of Dongsam (DS) and Yeonsan (YS) were selected for the comparison purpose between the coastal and inland regions. O3 concentrations in CA and SA were observed to be highest during spring (e.g., 40 ppb), whereas those in DA and RA were relatively low during summer (e.g., 22~24 ppb). It was found that O3 concentrations in IA were not significantly high although high VOCs (especially toluene of about 40 ppb) and NOx (≥ 35 ppb) were observed. On the other hand, the concentration levels of O3 and PM10 at the DS site were significantly higher than those at the YS site, but NOx was slightly lower than that at the YS site. This might be caused by the photochemical activity and meteorological conditions (e.g., sea-land breeze and atmospheric stagnance). When maximum O3 (an index of photochemical activity) exceeds 100 ppb, the contribution of secondary PM10 ((PM10)SEC) to total observed PM10 concentrations was estimated up to 32% and 17% at the DS and YS sites, respectively. In addition, the diurnal variations of (PM10)SEC at the DS site were similar to those of O3 regardless of season, which suggests that they are mostly secondary PM10 produced from photochemical reactions.