The small break loss-of-coolant accidents for the HANARO fuel test loop have been predicted by MARS code. Conservative method was used for the prediction of the loss-of-coolant accidents. The maximum peak cladding temperature was calculated as 1286K, which was lower than the design limit temperature (1477K) of nuclear fuels for the HANARO fuel test loop. The maximum peak cladding temperature occurred for the cold leg break in the HANARO pool. The hydrogen generation and oxidation of the fuel cladding were also negligible. Consequently, it is ensured that the emergency cooling water system for the HANARO fuel test loop is appropriate for the small break loss-of-coolant accidents.
FTL(Fuel Test Loop) is a facility that confirms performance of nuclear fuel at a similar irradiation condition with that of nuclear power plant. FTL construction work began on August, 2006 and ended on March, 2007. During Construction, ensuring the worker's safety was the top priority and installation of the FTL without hampering the integrity of the HANARO was the next one. The installation works were done successfully overcoming the difficulties such as on the limited space, on the radiation hazard inside the reactor pool, and finally on the shortening of the shut down period of the HANARO. The Commissioning of the FTL is on due to check the function and the performance of the equipment and the overall system as well. The FTL shall start operation with high burn up test fuels in early 2008 if the commissioning and licensing progress on schedule.
The nuclear fuel cladding temperatures of the HANARO fuel test loop have been calculated by MARS code for the large break loss-of-coolant accidents. Conservative method was used for the analysis of the loss-of-coolant accidents. Consequently, the maximum peak cladding temperature was predicted as 1235K, which was lower than the design limit temperature (1477K) of nuclear fuels for the HANARO fuel test loop. This means that the cooling capability of the emergency cooling water system for the HANARO fuel test loop is sufficient for the large break loss-of-coolant accidents.
The conservative method on the analysis of loss-of-coolant accidents for the HANARO fuel test loop was established based on the guide of evaluation method for the emergency core cooling systems of pressurized light water reactors. The evaluation models, the Moody model for discharge rate calculation and the Baker-Just model for water-metal reaction calculation, were used. In order to calculate conservative peak cladding temperatures for accidents the multipliers to the correlations of heat transfer coefficients in the MARS were also introduced. Consequently it is found that the maximum peak cladding temperature predicted by using the conservative method is sufficiently greater than that calculated by using the best-estimated models.