본 연구에서는 점근해석 및 논로컬 이론에서 요구하는 4차 이상의 고차 미분근사를 수행하기 위하여 계방정식에 혼합변분이론을 적용하여 MLS 차분법으로부터 구해지는 고차 미분근사의 정확도를 큰 폭으로 향상시킨다. 또한, MLS 차분법에 존재하는 세 가지 조건변수에 따른 고차미분근사의 정확도를 비교·분석한다. 혼합변분이론의 합응력을 후처리하여 변위의 미분을 근사할 경우 기존의 변위장 기반 계방정식의 차분 결과에 비해 미분 차수가 2차 낮아진다. 해석 범위내 절점 수가 과도하게 많거나 기저 차수가 클 경우 MLS 차분법의 영향영역 내에서 과적합(overfitting)이 발생한다. 또한 영향영역이 최적 범위 이상으로 넓어질 경우 근사의 정확도가 떨어진다. 위 내용을 사인 하중을 받는 단순지지보 수치예제로부터 확인하였다.
동역학의 새로운 변분이론인 혼합 합성 변분이론은 수학물리학을 비롯한 공학에 있어 초기치-경계치 문제해석에 광범위하게 적용될 수 있는 기반을 제공하는 것으로, 본 논문은 이 이론을 토대로 시간에 대한 이차의 형상함수가 적용된 시간 유한요소해석법을 개발하고 그 해석법의 수치특성 확인을 통해 향후 다양한 동적시스템 해석의 적용에 대한 가능성을 살펴보았다. 이를 위해 가장 기본적인 선형탄성의 단자유도계가 고려되었다. 에너지 보존시스템의 경우(비감쇠 시스템에 외력이 작용치 않는 경우), 제안된 알고리즘 모두는 time-step에 관계없이 안정적이며 수치감쇠가 없이 에너지와 모멘텀이 보존되는 symplecticity property를 가지고 있음을 확인할 수 있었고, 감쇠시스템인 경우, time-step이 점점 작아질수록 정확한 해에 빠르게 수렴하는 것을 확인하였다.