The purpose of this study is to assess a fire-damaged concrete structure using a digital camera and image processing software. To simulate it, mortar and paste samples of W/C=0.5(general strength) and 0.3(high strength) were put into an electric furnace and simulated from 100 ℃ to 1000 ℃. Here, the paste was processed into a powder to measure CIELAB chromaticity, and the samples were taken with a digital camera. The RGB chromaticity was measured by color intensity analyzer software. As a result, the residual compressive strength of W/C=0.5 and 0.3 was 87.2 % and 86.7 % at the heating temperature of 400 ℃. However there was a sudden decrease in strength at the temperature above 500 °C, while the residual compressive strength of W/C=0.5 and 0.3 was 55.2 % and 51.9 % of residual strength. At the temperature 700 ℃ or higher, W/C=0.5 and W/C=0.3 show 26.3% and 27.8% of residual strength, so that the durability of the structure could not be secured. The results of L*a*b color analysis show that b* increases rapidly after 700 ℃. It is analyzed that the intensity of yellow becomes strong after 700 ℃. Further, the RGB analysis found that the histogram kurtosis and frequency of Red and Green increases after 700 ℃. It is analyzed that number of Red and Green pixels are increased. Therefore, it is deemed possible to estimate the degree of damage by checking the change in yellow(b* or R+G) when analyzing the chromaticity of the fire-damaged concrete structures.
To predict the size of fire in the building, it was conducted a real fire experiment with a manufactured mock-up that had unit block size of 2.44 (L) × 3.6 (W) × 2.4 (H) m. The real fire testing was proceeded under scenario in which the fire starts from trash and is spread to all of real inflammable materials put beforehand inside the unit block such as bed, wardrobe and chest of drawers. As a experimental result, the fire grew rapidly about 120 seconds after the ignition, whose maximum heat release rate was 2658.9 kW.