The purposes of this study were to classify detailed climate types over the Republic of Korea (ROK) and to delineate their climate characteristics using the new normals of 1991-2020 for 219 weather stations. Total five climate types, Cfa, Cfb, Cwa, Dwa, and Dwb were identified in ROK based on the Köppen’s climate classification criteria. Subtropical climate types, Cfa or Cwa types were broadly covered with 79.9% of 219 stations and the most of remaining stations were included in Dwa types which had a very cold winter and hot summer with wet conditions. In the Trewartha classification, four climate types were identified, one subtropical Cfa, and three temperate Doa, Dca, and Dcb types. Dcb types were found at four stations (Daegwallyeong, Taebaek, Jinburyeong, and Sabuk) in Taebak mountains indicating the extent of cool summer climate types with more stations in mountain areas. The climate characteristics by climate types only were presented the results from the Trewartha classification with the new normals and 66 ASOS stations because Köppen’s climate classification was not appropriate for ROK. The annual mean precipitation of Cfa was the greatest while Dcb the lowest among four types. The annual range was the greatest at Dca types while the smallest at Cfa due to the geographical varieties. More detailed climate types were located in ROK with 219 weather stations and the new normals (1991-2020). However, there were some limitation applying the criteria of Köppen’s and Trewartha’s climate classification to a very complex topographical region.
In this study, we analyzed the characteristics of climate variability in summer rainfall during Changma over three sub-sector regions (Middle, Southern, Jeju) in South Korea for the new climatological period of 1991- 2020 using observation data from 60 ASOS stations. There was a significant interannual variability in rainfall, wet days, and rainfall intensity but the long-term trend of rainfall was not significant over the three sectors in South Korea. Comparing the new climatology (P2: 1991-2020) with the old one (P1: 1981-2010), it was found that the precipitation during Changma in new climatology (P2) was enhanced in Middle sector but reduced in Southern and Jeju sectors. In P2, wet days increased only a few stations in the Middle sector but the rainfall intensity was strengthened over the 50% stations including Middle sector, south and west coast of the Southern sector. Wet days above 25, 50, 75, 95%ile rainfall during Changma in Southern and Jeju sectors all decreased in P2. Climatological change from P1 to P2 showed a large variability not only in temporal frame but also in the spatial distribution in South Korea.