210Po is a naturally occurring radionuclide of 238U decay series with a half-life of 138.4 days. 210Po is decay products of 222Rn, which escapes into the atmosphere and present in all environments with aerosol particles. Also, 210Po has high radiotoxicity and emits a high alpha energy of 5.305 MeV, and it decays to finally become a stable isotope, 206Pb. Therefore, 210Po entering the body by continuously ingestion or inhalation is likely to cause severe damage to the bone marrow, kidney and spleen and other sites in the body. Accordingly, the World Health Organization (WHO) recommends that screening level of gross alpha for drinking water not exceed 0.5 Bq·L−1. Alpha spectrometry has been mainly used for analysis of 210Po, and for the accurate measurement of alpha particle with short range, it is essential to prepare suitable source for alpha detection. The 210Po alpha source is made by a spontaneous deposition method in which polonium is adsorbed thin and flat onto a metal disc, such as silver, nickel and copper. There are various pretreatment methods to separate and concentrate polonium from water samples prior to spontaneous deposition, including Fe(OH)3 or MnO2 co-precipitation and evaporation. However, in the case of co-precipitation, sample contamination or loss of polonium may occur through the experimental processes, and evaporation lead to not only time-consuming process but also may cause loss of polonium due to the low boiling point of polonium. Therefore, in order to compensate for these problems, an efficient polonium analysis method that directly collects polonium from the original sample without a pretreatment is required. In this study, 210Po in bottled drinking water sold in Korea was analyzed using alpha spectrometry. A high purity silver disc (99.99%) was inserted into a newly designed polonium deposition kit to quickly and conveniently collect polonium from a water sample. The polonium alpha detecting source was made effectively only by the spontaneous deposition method without a complicated pretreatment. The source was measured using a PIPS detector, and the radioactivity concentration of 210Po was calculated using 209Po as a yield tracer.