The purpose of this study is to develop a zirconium-based alloy with low modulus and magnetic susceptibility to prevent the stress-shielding effect and the generation of artifacts. Zr-7Cu-xSn (x = 1, 5, 10, 15 mass%) alloys are prepared by an arc melting process. Microstructure characterization is performed by microscopy and X-ray diffraction. Mechanical properties are evaluated using micro Vickers hardness and compression test. The magnetic susceptibility is evaluated using a SQUIDVSM. The average magnetic susceptibility value of the Zr-7Cu-xSn alloy is 1.176 × 108 cm3g1. Corrosion tests of zirconiumbased alloys are conducted through polarization test. The average Icorr value of the Zr-7Cu-xSn alloy is 0.1912 A/cm2. The elastic modulus value of 14 ~ 18 GPa of the zirconium-based alloy is very similar to the elastic modulus value of 15 ~ 30 GPa of the human bone. Consequently, the Sn added zirconium alloy, Zr-7Cu-xSn, is very interesting and attractive as a biomaterial that reduces the stress-shielding effect caused by differences of elastic modulus between human bone and metallic implants. In addition, this material has the potential to be used in metallic dental implants to effectively eliminate artifacts in MRI images due to low magnetic susceptibility.