Self-Powered Neutron Detector (SPND) is one of devices for in-core fluxes detecting without external electricity source. SPND consisted with emitter, insulator and collector. When neutrons reacted with emitter material, it generates electrons and these electrons cross insulator area to make electric signal in collector area. For calculating sensitivity of SPND with Monte-Carlo code such as MCNP, many physical components must be considered. Cobalt shows that prompt signal and relatively low signal comparing with other delayed signal SPNDs. Initial sensitivity was calculated as 4.28×10−22 A/nv-cm for one electron. Due to Cobalt’s complex decay chain and maintaining high efficiency of SPND, it is necessary to analysis the effect of activation of emitter. Therefore, the DPA (Displacements Per Atom) assessment and activation analysis of the detector components have been evaluated with MCNP 6.2 and ORIGEN-S. With these activation analysis results, that is expected to be used to determine the shielding thickness of the storage system.
In order to increase the therapeutic effect of radiation, there has been an increase in the use of conventional photon therapy. The intensive care unit should pay more attention to the radiation safety evaluation due to the higher energy and the larger facility compared to the existing Photon treatment. These radiation safety evaluations are mainly performed by using Monte Carlo simulation, and the first thing to be done is geometric modeling. The Heavy-ion treatment facility uses synchrotron as the accelerating device, which is difficult to precisely model geometrically and is mostly modeled briefly. This study investigated the effect of simplification and precise implementation of Dipole magnet among the components of synchrotron acceleration device on the radiation safety evaluation. The results show that the simplified geometric model is overestimated with the precisely implemented geometric model. Therefore, it is considered that the radiological safety evaluation results in more reliable results of the precise geometric modeling.