Joining of NiO-YSZ to 316 stainless steel was carried out with B-Ni2 brazing alloy (3 wt% Fe, 4.5 wt% Si, 3.2 wt% B, 7 wt% Cr, Ni-balance, m.p. 971-) to seal the NiO-YSZ anode/316 stainless steel interconnect structure in a SOFC. In the present research, interfacial (chemical) reactions during brazing at the NiO-YSZ/316 stainless steel interconnect were enhanced by the two processing methods, a) addition of an electroless nickel plate to NiO-YSZ as a coating or b) deposition of titanium layer onto NiO-YSZ by magnetron plasma sputtering method, with process variables and procedures optimized during the pre-processing. Brazing was performed in a cold-wall vacuum furnace at . Post-brazing interfacial morphologies between NiO-YSZ and 316 stainless steel were examined by SEM and EDS methods. The results indicate that B-Ni2 brazing filler alloy was fused fully during brazing and continuous interfacial layer formation depended on the method of pre-coating NiO-YSZ. The inter-diffusion of elements was promoted by titanium-deposition: the diffusion reaction thickness of the interfacial area was reduced to less than 5 compared to 100 for electroless nickel-deposited NiO-YSZ cermet.
Ag-Cu-Ti 삽입금속을 이용하여 제조된 AlN/Cu와 AlN/W 활성금속브레이징 접합체의 잔류응력을 유한요소법으로 탄성 및 탄소성 해석을 행하여 그 결과를 접합강도 측정 결과와 파단 거동 관찰 결과와 비교, 분석하였다. 최대 잔류 주응력의 크기는 AlN/W 접합체보다 모재간 열팽창계수 차이가 큰 AlN/Cu 접합체에서 더 크게 나타났으며, 접합계면에 인접한 AlN 세라믹스 자유표면에 인장 성분의 응력집중이 확인되었다. 모재와 삽입금속의 탄소성 변형을 모두 고려할 경우, AlN/Cu 접합체의 경우 연질의 삽입금속에 의해 최대 잔류 주응력이 감소하여 소성변형에 의한 응력완화 효과가 있음을 확인하였으나, 100μm 이상으로 삽입금속 두께를 증가시키더라도 잔류 주응력의 크기는 더 이상 크게 감소하지 않았다. 측정된 최대 접합강도는 AlN/Cu와 AlN/W 접합체에서 각각 52 MPa와 108 MPa이었으며, 파단 형태는 AlN/Cu 접합체는 AlN 자유표면으로부터 AlN 내부로 큰 각도를 이루면 진행되는 돔형의 파단이, AlN/W 접합체에서는 접합계면의 삽입금속층을 따라 AlN 측에서 파단이 일어나는 형태를 보였다.