In the actual sea, the additional resistance due to external force such as wind, current and wave is accompanied, and the required power is added in response to these resistance. Especially when the ship is sailing at low speed, the effects of wind and current have a great impact on the safe control of the ship. Likewise, it is thought that the effects of wind and current have a great impact on the trawl ship control since the towing speed of a bottom trawl ship is a low speed of 3 to 4 knots. If the reduce of ship speed and the increase of engine power due to the influence of wind and current can be identified, the safe towing power can be calculated based on a given engine output. Thus, the appropriate size of a fishing gear can be determined. In this study, a total of 20 trawl operations were conducted for seasonal maritime research in the same research area according to the operation mode of propeller. Based on navigation data, trawl fishing data, and engine performance data acquired during the towing fishing gear, and data of ship speed, hull resistance, fishing gear resistance, wind force and current force according to an incidence angle were estimated. The overall power for these loads was calculated and compared with the measured engine power, and the effects of wind force and current force on the engine power were investigated.