In the present study, potassium and caesium doped Ag/ catalysts were synthesized by simple wet impregnation method and evaluated for selective catalytic reduction (SCR) of NOx using methane. TEM analysis and diffraction patterns demonstrated the finely dispersed Ag particles. BET surface measurements reveal that the prepared materials have moderate to high surface area and the metal amount found from ICP analysis was well matching with the theoretical loadings. The synthesized K-Ag/ and Cs-Ag/ catalysts exhibited a promotional effect on deNOx activity in the presence of and . The long-term isothermal studies at under oxygen rich condition showed the superior catalytic properties of the both alkali promoted samples. The crucial catalytic properties of materials are attributed to NO adsorption properties detected by the NO TPD.
The influence of sulfate on the selective catalytic reduction of on the Ag/ catalyst was studied when was used as a reducing agent. Various preparation methods influenced differently on the activity. Among the methods, cogelation precipitation gave best activity. When sulfates were formed on the surfaces of samples prepared by impregnated and deposition precipitation, activity was enhanced as long as suitable forming condition is satisfied. The major sulfate formed in Ag/ catalyst was the aluminum sulfate and it seems that this sulfate acted as a promoter. When Mg was added to the Ag/ catalyst it promoted activity at high temperature. Intentionally added sulfate also enhanced activity, when their amount was confined less than 3 wt%.