Human dermal fibroblasts (HDFs) play a critical role in maintaining skin integrity and promoting tissue repair, but are highly susceptible to apoptosis under stress conditions such as nutrient deprivation. Adipose-derived stem cells (ADSCs) have emerged as a promising therapeutic option due to their regenerative potential and ability to secrete bioactive factors. In this study, we investigated the effect of ADSC-derived paracrine signaling on apoptosis in HDFs and explored the underlying molecular mechanisms. Using a Transwell co-culture system, we found that ADSCs significantly reduced apoptosis in HDFs subjected to low-serum stress, as confirmed by APOPercentage™ staining and the expression of apoptosis-related proteins. Among several soluble factors secreted by ADSCs, hepatocyte growth factor (HGF) exhibited the most pronounced time-dependent increase in culture supernatants. The anti- apoptotic effect of ADSCs was abolished by neutralizing antibodies against HGF, indicating a key role of this factor in mediating fibroblast survival. Further, HDFs were found to express the HGF receptor c-Met at both the mRNA and protein levels. Inhibition of c-Met signaling reversed the cytoprotective effect of ADSCs, suggesting that HGF functions through this receptor. Mechanistically, only the PI3K/AKT pathway—among the major survival pathways tested—was selectively activated in HDFs by ADSC co-culture. Pharmacological inhibition of PI3K/AKT signaling using LY294002 abolished the protective effect, while inhibition of ERK or p38 MAPK had no significant impact. These findings demonstrate that ADSC-derived HGF protects HDFs from stress-induced apoptosis primarily through activation of the c-Met–PI3K/ AKT pathway. This mechanistic insight may provide a basis for the development of stem cell– based therapies aimed at enhancing skin regeneration and fibroblast viability in degenerative or wound-healing contexts.
L-ascorbic acid (L-AA; vitamin C) induces apoptosis in cancer cells. This study aimed to elucidate the molecular mechanisms of L-AA-induced apoptosis in human laryngeal epidermoid carcinoma Hep-2 cells. L-AA suppressed the viability of Hep-2 cells and induced apoptosis, as shown by the cleavage and condensation of nuclear chromatin and increased number of Annexin V-positive cells. L-AA decreased Bcl-2 protein expression but upregulated Bax protein levels. In addition, cytochrome c release from the mitochondria into the cytosol and activation of caspase-9, -8, and -3 were enhanced by L-AA treatment. Furthermore, apoptosis-inducing factor (AIF) and endonuclease G (EndoG) were translocated into the nucleus during apoptosis of L-AA-treated Hep-2 cells. L-AA effectively inhibited the constitutive nuclear factor-κB (NF-κB) activation and attenuated the nuclear expression of the p65 subunit of NF-κB. Interestingly, L-AA treatment of Hep-2 cells markedly activated Akt and mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase [JNK]) and and LY294002 (Akt inhibitor), SB203580 (p38 inhibitor) or SP600125 (a JNK inhibitor) decreased the levels of Annexin V-positive cells. These results suggested that L-AA induces the apoptosis of Hep-2 cells via the nuclear translocation of AIF and EndoG by modulating the Bcl- 2 family and MAPK/Akt signaling pathways.