검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        2.
        2023.11 구독 인증기관·개인회원 무료
        Pyroprocessing is a crucial method for recovering nuclear fuel materials, particularly uranium and transuranic elements (TRU), through electrochemical reactions in a LiCl or LiCl-KCl molten salt system, which is highly stable medium at elevated temperatures. In the electrochemical reduction stage, actinide metal oxides are effectively transformed into their metallic forms and retained at the cathode within a molten LiCl-Li2O environment at 650°C. Simultaneously, oxygen ions (O2-) are generated at the cathode and then transported through the molten salt to be discharged at the anode, where they combine to form oxygen gas (O2) on the anode’s surface. One notable challenge in this electrochemical process is the generation of various byproducts during the anode oxide reduction step, including oxygen, chlorine, carbon dioxide, and carbon monoxide. Consequently, significant amounts of corrosion products tend to accumulate on the upper region of the anode’s immersion area over time. This report introduces a novel solution to mitigate corrosion-related challenges within the specified temperature range. We propose a selective oxidation treatment for the NiCrAl-based 214 Haynes alloy, involving exposure to 1,100°C in a reducing atmosphere. The objective is to stimulate the growth of protective α-Al2O3 scales on the alloy’s surface. The resulting oxide scales have undergone thorough characterization using SEM, EDS, and XRD techniques. The pre-grown alumina scale has demonstrated commendable adherence and thermal stability, even when subjected to a chlorine-oxygen mixed atmosphere at the specified temperature.