검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        4.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해양구조물 수중부의 해양생물 부착을 방지하는 효과적인 방법으로 방오도료를 사용하고 있다. 트리부틸틴(Tributyltin, TBT) 화합물은 우수한 방오성능을 가져 지금까지 광범위하게 사용해 되어 왔으나, 유해물질 사용금지에 따라 새로운 기술을 적용한 방오도료 개발이 진행되고 있다. 신규 방오도료는 낮은 독성을 가지면서도 우수한 방오성능을 가져야 한다. 본 논문에서는 상용 TBT-free 방오도료 3종(아산화동 함유 자기마모형 도료(Cu SPC AF), 아산화동을 함유하지 않는 자기마모형 도료(Cu-Free SPC AF), Foul-release 실리콘 도료(Foul release AF)의 용출수가 가지는 환경영향성을 조피볼락과 알테미아를 사용하여 평가하였다. 용출수에 대한 급성독성을 조사한 결과 방오도료 용출수의 농도와 생물종의 생존율은 반비례하는 경향을 나타내었으며, 자가마모형 도료가 Foul-release 실리콘 도료보다 상대적으로 높은 급성독성을 가지는 것을 확인할 수 있었다.
        4,000원
        6.
        2023.03 KCI 등재 서비스 종료(열람 제한)
        This study aims to inactivate Artemia sp. (Zooplankton) in ballast water through the dielectric barrier discharge (DBD) plasma process. The DBD plasma process has the advantage of enabling direct electric discharge in water and utilizing chemically active species generated by the plasma reaction. The experimental conditions for plasma reaction are as follows; high voltage of 9-22 kV, plasma reaction time of 15-600 s, and air flow rate of 0.5-5.5 L/min. The results showed that the optimal experimental conditions for Artemia sp inactivation were 16 kV, 60 s, 2.5 L/min, respectively. The concentrations of total residual oxidants and ozone generated by plasma reaction increased with an increase of in voltage and reaction time, and the concentration of generated air did not increase above a certain amount.
        7.
        2019.03 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to investigate the effect of salt concentration and turbidity on the inactivation of Artemia sp. by electrolysis, UV photolysis, electrolysis+UV process to treat ballast water in the presence of brackish water or muddy water caused by rainfall. The inactivation at different salt concentrations (30 g/L and 3 g/L) and turbidity levels (0, 156, 779 NTU) was compared. A decrease in salt concentration reduced RNO (OH radical generation index) degradation and TRO (Total Residual Oxidant) production, indicating that a longer electrolysis time is required to achieve a 100% inactivation rate in electrolysis process. In the UV process, the higher turbidity results in lower UV transmittance and lower inactivation efficiency of Artemia sp. Higher the turbidity resulted in lower ultraviolet transmittance in the UV process and lower inactivation efficiency of Artemia sp. A UV exposure time of over 30 seconds was required for 100% inactivation. Factors affecting inactivation efficiency of Artemia sp. in low salt concentration are in the order: electrolysis+UV > electrolysis > UV process. In the case of electrolysis+UV process, TRO is lower than the electrolysis process, but RNO is more decomposed, indicating that the OH radical has a greater effect on the inactivation effect. In low salt concentrations and high turbidity conditions, factors affecting Artemia sp. inactivation were in the order electrolysis > electrolysis+UV > UV process. When the salt concentration is low and the turbidity is high, the electrolysis process is affected by the salt concentration and the UV process is affected by turbidity. Therefore, the synergy due to the combination of the electrolysis process and the UV process was small, and the inactivation was lower than that of the single electrolysis process only affected by the salt concentration.
        8.
        2017.04 KCI 등재 서비스 종료(열람 제한)
        In this study, we examined the suitability of ten disinfection models for predicting the inactivation of Artemia sp. via single or combined physical and chemical treatments. The effect of Hydraulic Retention Time (HRT) on the inactivation of Artemia sp. was examined experimentally. Disinfection models were fitted to the experimental data by using the GInaFiT plug-in for Microsoft Excel. The inactivation model were evaluated on the basis of RMSE (Root Mean Square Error), SSE (mean Sum Square Error) and r2. An inactivation model with the lowest RMSE, SSE and r2 close to 1 was considered the best. The Weibull+Tail model was found to be the most appropriate for predicting the inactivation of Artemia sp. via electrolytic treatment and electrolytic-ultrasonic combined treatment. The Log-linear+Tail model was the most appropriate for modeling inactivation via homogenization and combined electrolytic-homogenization treatment. The double Weibull disinfection model was the most suitable for the predicting inactivation via ultrasonic treatment.