오염발생부하량을 억제하고 환경 친화적으로 지역을 개발할 수 있는 유역중심의 수질관리정책으로 수질오염 총량관리제를 도입하게 되었다. 하지만 총량 관리제의 시행에도 불구하고 낙동강 주요지천인 남강 하류부의 수질이 2005년 이후 지속적으로 악화되고 있는 실정이다. 남강 하류수계는 주변의 도시와 산업지역에 비점오염원이 산재하고, 하류수계의 물의 흐름이 더욱 완만해짐에 따라 수질 악화가 가속화되고 부영양화 현상이 발생되고 있다. 부영양화된 수역에서 BOD 농도는 유역으로부터 발생한 미처리 하수가 수역으로 유입되는 영향도 있지만 하천내에서 미처리된 영양염을 이용한 식물플랑크톤의 생산에 의해 공급되는 자생 BOD의 영향도 크게 작용한다. 남강하류의 수질관리를 위해서 유입 BOD와 자생 BOD의 기여도를 파악하여 오염 원인물질을 줄이기 위한 수질관리 방안이 설정되어야 한다. 본 연구에서는 조류 생산 및 사멸에 의한 내부생산 유기물 증가를 고려하도록 국내에서 개발된 QUALKO2와 미국 EPA의 QUAL2E를 이용하여 자생 BOD의 영향을 분석하였다. QUALKO2 모형에서 Chl.a의 영향을 받는 구간에서 BOD 농도가 QUAL2E 모형의 BOD 농도보다 증가하고, 실측값과의 상관관계를 분석해 본 결과 QUALKO2 모형에서 상관관계가 높게 나타났다. 남강 하류의 수질악화 문제를 해결하기 위하여 댐 방류량의 증가와 하수처리장 방류수질 개선 등에 의한 Chl,a의 저감 방안을 모색하여 자생 BOD를 관리할 수 있을 것이다.
The Keum river is one of the important river in Korea and has a drainage area of 9,873 ㎦. The Keum river is deepening pollution state due to development of the lower city and construction of a industrial complex. The water quality of the Keum river come to eutrophication state and belong to Ⅲ grade of water quality standard.
The concentration BOD in river is affected by the organic loading from a tributary and the algae biomass that largely happen to under eutrophication state. In the eutrophic water mass such as the Keum river, the autochthonous BOD was very important part for making a decision of water quality management, because it was accounted for majority of the total BOD.
The purpose of this study was to survey the characteristics of water quality in summer and to estimate reaction coefficient. Also, we studied to correlationship between chlorophyll a and BOD(COD) for estimation of the autochthonous BOD. The correlationship between chlorophyll a and BOD(COD) were obtained through the culture experiment of phytoplankton in the laboratory. The results of this study may be summarized as follows ;
The characteristics of water quality in summer were belong to Ⅲ∼Ⅳgrade of water quality standard as BOD and nutritive condition is very high.
The BOD, ammonia nitrogen and phosphate loadings in Miho stream which inflowing untreated sewage from Chungju city was occupied with 64.07%, 26.36%, 46.08%, respectively.
Maximum nutrient uptake (Vmax) was 0.4400 μM/hr as substrate of ammonia nitrogen, 0.1652 μM/hr as substrate of phosphate. Maximum specific growth rate (μmax) was 1.2525 hr-1 as substrate of ammonia nitrogen, 1.5177 hr-1 as substrate of phosphate.
The correlation coefficient between chlorophyll a and BOD by the culture experiment were found to be 0.911∼0.935 and 0.942∼0.947 in the case adding nutrient and no adding nutrient, respectively.
The correlation coefficient between chlorophyll a and COD through the culture experiment were found to be 0.918∼0.977 and 0.880∼0.931 in the case adding nutrient and no adding nutrient, respectively.
The autochthonous BOD(COD) was estimated to the relationship between BOD(COD) and chlorophyll a. The regression equation were found to be autochthonous BOD=(0.045∼0.073)×chlorophyll a and autochthonous COD=(0.137∼0.182)×chlorophyll a.
The Keum river has been utilized for drinking water supply of several city including Kunsan city and is deepening pollution state due to numerous municipal and industrial discharges.
The concentration BOD in river is affected by the organic loading from a tributary and the algae biomass that largely happen to under eutrophication state. In the eutrophic water mass such as the Keum river, the autochthonous BOD was very important part for making a decision of water quality management, because it was accounted for majority of the total BOD.
The predict of water quality has important meaning for management of water quality pollution of the Keum river.
The purpose of this study will manage and predict water quality of the Keum river using QUAL-2E model considering the autochthonous BOD.
The estimation of autochthonous BOD represented that the relationship between BOD and chlorophyll a. The regression equation was shown to be autochthonous BOD=β5×chlorophyll a. The results of this study may be summarized as followed;
The QUAL-2E model was calibrated with the data surveyed in the field of the study area in June, 1998. The calculated value by QUAL-2E model are in good agree to measured value within relative error of 7.80∼20.33%. Especially, in the case of the considering autochthonous BOD, the calculated value of BOD were fairly good coincided with the observed values within relative error of 15%. But the case of not considering autochthonous BOD, relative error of BOD was shown to be 43.2%.
In order to attain Ⅱ grade of water quality standard in Puyo station which has a intake facility of water supply, we reduced to the pollutants loading of tributaries. In the case of removed 100% BOD of tributaries, the BOD of Puyo station was 4.07㎎/ℓ, belong to Ⅲ grade of water quality standard. But in the case of removed 88% nutrient of tributaries, it was satisfied to Ⅱ grade of water quality standard as below 3㎎/ℓof BOD.
For estimation of autochthonous BOD in Keum river, we are performed simulating in accordance with reduction of nutrient load(50∼100%) under conditions removal 90% organic load. Occupancy of autochthonous BOD according to nutrient loading reductions were varied from 25.97∼79.51%. Occupancy of autochthonous BOD was shown to be a tendency to increasing in accordance with reduction of nutrient loading.
Showing the above results, the nutrient that one of the growing factor of algae was important role in decision of BOD in the Keum river. For the water quality management of the Keum river, therefore, it is necessary to considering autochthonous BOD and to construction of advanced sewage treatment plant for nutrient removal.