This study aims to prepare bamboo-based activated carbons with surface modifications, focusing on carbon dioxide (CO2) capture in public indoor spaces. The surface of the activated carbon adsorbents was chemically modified through three steps: carbonization, steam activation, and chemical treatment using potassium hydroxide (KOH) and potassium sulfamate (KSO3NH2). The specific surface area and pore volume of the obtained adsorbent (BSAC-KN) were 1,246 m2/g and 0.74 cm3/g, respectively. The surface modification resulted in an adsorption capacity of up to 3.79 mmol-CO2/ g-AC for carbon dioxide. In addition, the expansion of the specific surface area and the enhanced physico-chemical interaction between the weak acidic CO2 molecules and the basic AC surface improved adsorption capacity.
Polylactic acid (PLA) is often used in the preparation of environmentally friendly biodegradable polymer plastics, and how to improve the flame retardant performance of polylactic acid has been concerned by experts and scholars. Here, we provide a new idea, using bamboo activated carbon as the main material, and phytic acid, urea and Zn(NO3)2·6(H2O) as modifiers to produce a new type of carbon flame retardant. It has bamboo activated carbon as carbon source; second, it has P, N elements and metal oxides. The two synergistically play a flame retardant role on polylactic acid. The polylactic acid composite showed good thermal stability, from no grade optimization to V-0 in the UL-94 test, and the limiting oxygen index was also increased from 20.1 to 31.2%. The above tests show that bamboo activated carbon loaded with ZnO has a good flame retardant effect on polylactic acid.