This study analyzed habitat status of barn swallows within 800 m and changes in potential food resource occurrence for 63 nests (Seocheon 23, Sejong 40) where barn swallows breeding was confirmed in Seocheon and Sejong in 2019 and 2020. As a result of checking habitat compositions of barn swallows in the study area, Sejong showed more varieties of habitat types than Seocheon, showing a larger number of dominant groups. Such large number of dominant groups was found to be an advantageous habitat factor for producing flying insects as potential food resources for barn swallows. As for the production of potential food resources, Seocheon had the highest production in dwelling and stream and Sejong had the highest production in the stream. The production of potential food resources differed in production season by habitat type. This study analyzed compositions of the habitat around the breeding site of swallows. It provides basic data necessary for protecting barn swallow habitats by comparing the production timing and production volume of potential food resources occurring in the habitat.
The present trial verified the effects of spraying microbial agents on odor reduction in commercial pig farms of different operating sizes and barn types. Farms without microbial agent spraying and those sprayed with microbial agents at two different intervals were compared. The treatments included spraying of water alone every day or a mixture of water plus microbial agent at 24 and 72 h intervals. The experimental farms were divided according to size into 1,000-, 3,000-, and 5,000-head farms and according to barn type into gestation, farrowing, nursery, and grower-finisher farms. To compare odor concentration within each housing barn, ammonia and hydrogen sulfide gas levels were measured. The average concentrations of ammonia (p<0.01) and hydrogen sulfide (p<0.05) gas were the lowest in all types of farms sprayed with the microbial agent at a 24 h interval. In farms sprayed with the microbial agent at a 24 h interval, the decrease in ammonia concentration according to barn type was in the following order: farrowing (p<0.01) (11.0 to 1.8 ppm), nursery (p<0.05) (17.0 to 9.2 ppm), grower-finisher (15.3 to 8.8 ppm), and gestation (9.7 to 6.4 ppm) farms. Moreover, spraying the microbial agent at a 24 h interval significantly (p<0.01) decreased ammonia concentration from 19.9 to 10.4 ppm, from 11.1 to 4.1 ppm, and from 8.8 to 5.1 ppm in 5,000-, 3,000-, and 1,000-head farms, respectively. Overall, spraying microbial agents every day may be the most effective method to reduce odor in commercial pig farms.