This study executed evaluation of drying characteristics based on the polymer injection rate (8%, 10% and 12%) and the drying method[NIF(near-infrared ray). According to this study analyzed VS, VS/TS, and calorific value compared with ‘the auxiliary fuel standard of the thermoelectric power plant and the combined heat & power plant’. The results are as follows. In the case of NIR, the VS was slightly changed at the early stage of the material preheating period and the constant drying rate period with low moisture evaporation. But VS reduction was shown higher as moisture was dried. In the case of non-digested sludge with high VS content, the VS reduction rate by drying was shown lower than that of digested sludge. As the flocculant injection rate increased, the VS loss due th drying was found to be small. Also, the higher the flocculant injection rate was the longer the drying time. Especially, in the case of the NIR drying equipment, as the moisture content of sewage sludge decreased(moisture content 20∼40%), the loss of net VS also showed a tendency to increase sharply. It is shown that the high calorific value according to the drying time of the non-digested sludge was changed from 590 ㎉/㎏ to 3,005 ㎉/㎏ and from 539 ㎉/㎏ to 2,796 ㎉/㎏.
The ocean dumping of organic waste as food waste has been prohibited since 2012 and so it is necessary to find alternative methods for its treatment and disposal. The purpose of this study was to treat food waste via hydrothermal carbonization (HTC) that has advantages such as no pre-treatment as drying feedstock and low energy consumption. Additionally, feasibility study for Bio-SRF (Solid Refused Fuel) was conducted to produce hydrochar via HTC. As results from quality standards experiments based on 「Solid Fuel Product Quality Testing Method in Korean」, the optimal condition of 220oC as reaction temperature and 4 hr as reaction time have been selected. Since 2012, the ocean dumping of organic waste as food waste has been prohibited, it is necessary to replace its treatment and disposal. This study applied to treat of food waste via hydrothermal carbonization (HTC) which the method has advantages such as no pre-treatment as drying feedstock and low energy consumption. Moreover, feasibility study for Bio-SRF (Solid Refused Fuel) conducted to producted hydrochar via HTC. As a results from quality standards experiments based「Solid Fuel Product Quality Testing Method in Korean」, the optimal condition of 220oC as reaction temperature and 4 hr as reaction time has been selected.
Recently many research and investment have been made for waste biomass to bio solid fuel development in Korea. In this study, monte-carlo simulation is applied to estimate the bio solid fuel product quality made from various biomass as raw materials. Commercial biomass and waste biomass raw material samples were collected to investigate the basic properties and to predict mixed effect to solid bio-fuel product. The results show that predicted subject properties about applying a single quality items was reasonable, but for mixed biomass raw material, correlations and logical relevance of several items will be need to assume that require additional consideration for it. The stochastic techniques established through this study will be applicable to bio-solid fuel product development with a variety of waste biomass.