검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, graphene oxide (GO) was synthesized by the improved Hummers’ method. The degree of oxidation from graphite (Gi) to GO was determined through interlayer spacing calculated from X–ray diffraction. Besides, the effect of KMnO4: Gi ratios (X1), H2SO4 volume (X2), oxidation temperature (X3), oxidation time of stage 1 (X4), and oxidation time of stage 2 (X5) was screened by the Plackett–Burman model. The simultaneous impact of three factors that influenced the degree of oxidation (X1, X2, and X3) was studied by the Box–Behnken experimental model of response surface methodology to achieve suitable conditions for the GO synthesis process. The characterization of GO product was investigated via the modern analytical methods: X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, UV–Vis spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. Inaddition, the study was also carried out on a pilot scale for orientation in industrial application with the yield of 14 g/batch.
        4,300원
        2.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Response surface methodology (RSM) based on a Box-Behnken Design (BBD) was applied to optimize the thermal-alkaline pre-treatment operating conditions for anaerobic digestion of flotation scum in food waste leachate. Three independent variables such as thermal temperature, NaOH concentration and reaction time were evaluated. The maximum methane production of 369.2 mL CH4/g VS was estimated under the optimum conditions at 62.0°C, 10.1% NaOH and 35.4 min reaction time. A confirmation test of the predicted optimum conditions verified the validity of the BBD with RSM. The analysis of variance indicated that methane production was more sensitive to both NaOH concentration and thermal temperature than reaction time. Thermal-alkaline pretreatment enhanced the improvement of 40% in methane production compared to the control experiment due to the effective hydrolysis and/or solubilization of organic matters. The fractions with molecular weight cut-off of scum in food waste leachate were conducted before and after pre-treatment to estimate the behaviors of organic matters. The experiment results found that thermal-alkaline pre-treatment could reduce the organic matters more than 10kD with increase the organic matters less than 1kD.
        4,000원
        3.
        2022.08 KCI 등재 서비스 종료(열람 제한)
        Magnetic activated carbon was prepared by adding a magnetic material to activated carbon that had been prepared from waste citrus peel in Jeju. The adsorption characteristics of an aqueous solution of the antibiotic trimethoprim (TMP) were investigated using the magnetic activated carbon, as an adsorbent, and response surface methodology (RSM). Batch experiments were carried out according to a four-factor Box-Behnken experimental design affecting TMP adsorption with their input parameters (TMP concentration: 50~150 mg/L; pH: 4~10; temperature: 293~323 K; adsorbent dose: 0.05~0.15 g). The significance of the independent variables and their interaction was assessed by ANOVA and t-test statistical techniques. Statistical results showed that TMP concentration was the most effective parameter, compared with others. The adsorption process can be well described by the pseudo-second-order kinetic model. The experimental isotherm data followed the Langmuir isotherm model. The maximum adsorption capacities of TMP, estimated with the Langmuir isotherm model were 115.9-130.5 mg/g at 293-323 K. Also, both the thermodynamic parameters, △H and △G, have both positive values, indicating that the adsorption of TMP by the magnetic activated carbon is an endothermic reaction and proceeds via an involuntary process.
        4.
        2010.07 KCI 등재 서비스 종료(열람 제한)
        The experimental design and response surface methodology (RSM) have been applied to the investigation of the electro-UV complex process for the disinfection of E. coli in the water. The disinfection reactions of electro-UV process were mathematically described as a function of parameters power (X1), NaCl dosage (X2), initial pH (X3) and disinfection time (X4) being modeled by use of the Box-Behnken technique. The application of RSM using the Box-Behnken technique yielded the following regression equation, which is an empirical relationship between the residual E. coli number and test variables in actual variables: Ln (CFU) = 23.57 - 0.87․power - 1.87․NaCl dosage - 2.13․pH - 2.84․time - 0.09․powe r․time - 0.07․NaCl dosage․pH + 0.14․pH․time + 0.03․power 2 + 0.47․NaCl dosage 2 + 0.20․pH 2 + 0.33․time 2 . The model predictions agreed well with the experimentally observed result (R 2 = 0.9987). Graphical response surface and contour plots were used to locate the optimum point. The estimated ridge of maximum response and optimal conditions for the E. coli disinfection using canonical analysis was Ln 1.06 CFU (power, 15.40 W; NaCl dosage, 1.95 g/L, pH, 5.94 and time, 4.67 min). To confirm this optimum condition, the obtained number of the residual E. coli after three additional experiments were Ln 1.05, 1.10 and Ln 1.12. These values were within range of 0.62 (95% PI low)~1.50 (95% PI high), which indicated that conforming the reproducibility of the model.