A 11 year-old, female, shih-tzu mixed-breed dog was presents with history of sudden blindness for 2 days. An ophthalmic test was conducted to find the cause of blindness, including an intraocular pressure test, a fundus test, and an electroretinogram. As a result of the test, the abnormality in the eye could not be confirmed, so MRI request was made. MRI confirmed mass areas with 1.0 × 0.5 mm T2W/FLAIR heterogeneous hyperintense, T1W isointense, and enhancement that spread widely from the dorsal part of the sella turcica to the anterior optical chiasm. Cystic lesion was identified in the front of the lesion, and it had the characteristics of an extra-axial tumor such as a broad base attachment surface and a dural tail signal. Based on these tests diagnosed blindness caused by brain tumors. Clinical symptoms began to improve three days after taking chemotherapy, and all clinical symptoms disappeared after a week. This case report demonstrated that clinical sign, diagnostic imaging and successful treatment result with chemotherapy in canine brain tumor patient.
컴퓨터 성능의 발전으로 빅데이터의 효율적인 사용이 가능해지면서, 심층 학습(deep learning)은 다양한 의료 분야에 활용할 수 있는 핵심적인 인공지능(artificial intelligence, AI) 기법으로 각광받고 있다. 이에 본 종설은 뇌종양 진단과 치료에 사용되는 자기공명영상(magnetic resonance imaging, MRI)의 심층 학습 기법을 소개하고자 하였다. 먼저 국내 AI의 의료 분야 도입의 동향을 분석하고, 이를 바탕으로 MRI를 활용한 뇌종양의 진단과 치료에 적용할 수 있는 심층 학습 기법과 그 결과들을 기술하였다. 뇌종양 진단과 치료 시, 심층 학습을 이용한 최근 사례는 영상 분류, 영상 품질 개선, 영상 분할로 나타났으며, 질병의 진단과 치료에 적용할 수 있는 객관적이고 높은 성능 수치를 나타내면서 그 유용성을 확인 할 수 있었다. 종합하자면, 심층 학습은 질병의 진단과 치료에 적용할 수 있는 유용한 지표이며, AI 역량을 지닌 의료진의 지도하에 점진적인 도입이 이뤄진다면 질병의 진단과 치료에 큰 도움을 주는 훌륭한 소프트웨어로 활용될 것으로 여겨진다. 본 종설이 심층 학습을 이해할 때 많은 도움이 되길 바라며, 향후 관련 연구를 수행할 때 가이드라인으로 활용될 것을 기대 한다.
자기공명영상은 고해상도의 연부조직에 대한 영상정보를 제공하며, 뇌종양 등 연부조직 진단에 활용된다. 본 연구는 합성곱신경망 인공지능을 통해 뇌종양 자기공명영상 분류성능을 확인해 보고자 한다. 4개 종류로 구분된 3264 장의 MRI 데이터 세트(data set)를 이용하였으며, 인공지능 학습을 위해 훈련용 데이터와 시험용 데이터를 9 : 1, 훈련용 데이터의 10%를 검증용 데이터로 구분하였다. 합성곱신경망은 기본 CNN과 VGG16으로 구성하였으며, 학습 평가는 정확도와 손실율로 확인하였으며, 생성된 모델을 통해 분류성능 정확도를 확인하였다. 실험 결과 과적합은 없었으며, 분류성능은 기본 CNN과 VGG16 각각 67%와 80%의 분류성능을 보였다. 도출된 뇌종양 자기공명영상 분류 결과를 통해 자기공명영상과 인공지능 접목에 관한 기초 자료로 사용될 수 있을 것이라 사료된다.
MRI는 연부조직에 대한 고해상도의 영상을 제공하며 진단적 가치가 매우 높은 영상 검사이며, 디지털 데이터를 이용하여 딥러닝 기술을 통해 컴퓨터 보조 진단 역할을 수행할 수 있다. 본 연구는 딥러닝 기반 YOLOv3를 이용하여 뇌종양 분류 성능을 확인해 보고자 한다. 253장의 오픈 MRI 영상을 이용하여 딥러닝 학습을 진행하고 학습 평가지표는 평균손실(average loss)와 region 82와 region 94를 사용하였으며, 뇌종양 분류 모델 검증을 위해 학습에 사용되지 않은 영상을 이용하여 검출 성능을 평가하였다. 평균손실은 2248 epochs 시 0.1107, region 82와 region 94의 24079 반복학습 시 average IoU, class, .5R, .75R은 각각 0.89와 0.81, 1.00과 1.00, 1.00과 1.00, 1.00과 1.00의 결과값을 도출하였다. 뇌종양 분류 모델 검증 결과 정상 뇌와 뇌종양 각각 95.00%, 75.36%의 정확도로 분류할 수 있었다. 본 연구 결과를 통해 MRI 영상을 활용한 딥러닝 연구 및 임상에 기초자료로 사용될 것이라 사료된다.
In previous reports, pVPSV.IGR2.1 transgenic mouse were described that brain tumor and lymphoma by reason of Vasopressin-SV40 T antigen. In this study, we produced pVPSV.IGR3.6 transgenic mouse that used pVPSV.IGR3.6 vector. Expression of transgene was vary different in transgenic mouse. We obtained 6 transgenic mouse line, moreover they had died at the age of 2-6 weeks without transmitting the transgene to their offspring, and had tumorigenesis on same location with pVPSV.IGR2.1 transgenic mouse. Only a founder mouse was investigated for expression of fusion gene. Here we extended this transgenic approach to the study of tumor progression. From the mouse, we confirmed brain tumor cell, after then cultured for investigate characterization. In this report, we demonstrate that reduction of survival rate in transgenic mouse fused vasopressin gene length, acquisition of brain tumor cell, composition with astrocyte cells and neuronal cells. Finally, cells had no change with increase of passage.