검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Brain-derived neurotrophic factor (BDNF) and its receptor, neurotrophic tyrosine receptor kinase-2 (NTRK2), are well known for their roles in the central nervous and animal reproductive systems. Several studies have observed the extensive expression of BDNF and NTRK2 in non-neuronal tissues, especially reproductive organs. However, most of these studies focused on ovarian development and regulation; thus, scientific research on BDNF and NTRK2 in males is required to determine their roles in the male reproductive system. Therefore, this study aimed to investigate BDNF and NTRK2 expression in bovine testes. Methods: Testes were collected from six Hanwoo bulls (6-8 months old). Reverse transcription-polymerase chain reaction (RT-PCR) analysis was performed to investigate the mRNA expression of BDNF and NTRK2 in the testes. Western blot analysis was performed to verify the cross-reactivity of BDNF and NTRK2 antibodies with bovine testicular tissues. Immunohistochemistry was conducted to determine BDNF and NTRK2 protein expression in the testes. Results: RT-PCR analysis revealed BDNF and NTRK2 mRNA expression in bovine testes. In Western blotting, BDNF and NTRK2 protein bands were observed at 32 and 45 kDa, respectively. Immunofluorescence demonstrated BDNF expression in the nuclei of spermatogonia and Sertoli cells as well as in the cytoplasm of Leydig cells. NTRK2 was exclusively expressed in Sertoli cells. These results suggest that BDNF plays a potential role in spermatogenesis via BDNF and NTRK2 signaling in bovine testes, a finding supported by previous results in different animal species. Conclusions: The expression patterns of BDNF and NTRK2 indicate their functional importance in the bovine reproductive system.
        4,000원
        2.
        2007.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Environmental Enrichment (EE) alone is not capable of enhancing the fine digit and the forelimb functions. Therefore, we applied modified constraint-induced movement therapy (mCIMT) under the influence of EE to assess its effect on promoting improved forelimb sensorimotor functions. Focal ischemic brain injury was produced in Sprague-Dawley rats (60 rats, 250±50 g) through middle cerebral artery occlusion (MCAO). Before MCAO induction, all rats were trained in modified limb placing tests and reaching tasks for 1 week. Then they were randomly divided into three groups: Group I: application of standard environment (SE) after MCAO induction (n=20), Group II: application of EE after MCAO induction (n=20), Group III: MCAO+EE, mCIMT and task-oriented training that was initiated at 10th day after MCAO induction (n=20). We also applied mCIMT (between 9 AM and 5 PM/daily) which included restraining the forelimb ipsilateral to the lesion using the 'Jones & Schallert' method. We assessed the change of modified limb placing, single pellet reaching test and the immunoreactivity of BDNF by immunohistochemistry (pre, 1st, 5th, 10th and 20th day). Group I showed no improved outcome, whereas group II and III significantly improved on the use of the forelimb and the immunoreactivity. The qualitative analysis of the skilled reaching test, of group III showed the greatest improvement in the fine digit and the forelimb function. These results suggest that EE combined with mCIMT is more functional in promoting enhanced fine digit and forelimb functional movements.
        4,000원