The purpose of this study is to investigate the seismic behavior of hollow reinforced concrete bridge column systems with reinforcement details for material quantity reduction and to provide the details and reference data. Five hollow reinforced concrete bridge columns were tested under a constant axial load and a cyclically reversed horizontal load. The accuracy and objectivity of the assessment process can be enhanced by using a sophisticated nonlinear finite element analysis program. The adopted numerical method gives a realistic prediction of seismic performance throughout the loading cycles for several the investigated test specimens. This study documents the testing of hollow reinforced concrete bridge column systems with reinforcement details for material quantity reduction and presents conclusions based on the experimental and analytical findings.
The purpose of this study was to investigate the performance of hollow reinforced concrete bridge column systems with reinforcement details for material quantity reduction. The proposed reinforcement details have economic feasibility and rationality and make construction periods shorter. A model of hollow reinforced concrete bridge columns was tested under a constant axial load and a quasi-static cyclically reversed horizontal load. As a result, proposed reinforcement details for material quantity reduction were equal to existing reinforcement details in terms of required performance. The companion paper presents the experimental and analytical study for the performance assessment of hollow reinforced concrete bridge column systems with reinforcement details for material quantity reduction.