검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 필라테스 브릿지 동작 시 소도구의 적용과 발의 불안정성 차이에 따른 신체 근육의 근전도를 비교·분석하는데 있었다. 본 연구의 대상자는 20대 남성 18명을 대상으로 실시하였고(연령, 22.3±2.1세; 신장, 173.89±4.51cm; 체중, 72.61±4.13kg; 신체질량지수, 24.03±1.31kg/m2), 필라테스 브릿지는 소도구 적용(도구 없음, 링, 짐볼)과 발의 불안정성(기본 바닥, 폼롤러, 보수볼) 차이에 따른 9 가지 동작을 수행하였으며, 표면전극 부착 부위는 신체 우측의 상복직근, 하복직근, 외복사근, 장내전근, 대 퇴직근, 외측광근, 전경골근, 및 대퇴이두근으로 설정하였다. 본 연구의 결과는 다음과 같다. 필라테스 브릿지 동작 시 짐볼의 적용이 신체 근육의 근활성도에 효과적인 소도구로 검증되었고, 보수볼의 적용이 신체 근육의 근활성도에 가장 높은 발의 불안정성으로 검증되었다. 이상의 결과를 종합해보면, 필라테스 브릿지 동작 시 짐볼과 보수볼의 적용이 신체 근육의 근활성도에 지대한 영향력을 미친 것으로 나타났다. 따라서 본 연구의 결과는 신체 근력 강화를 위한 효율적인 필라테스 브릿지 운동을 제시할 수 있을 것으로 기대된다.
        4,000원
        2.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 BWIM(Bridge Weigh-in-Motion) 시스템을 기반으로 주행차량의 총중량 및 축중량 추정을 수행하였다. BWIM 시스템의 개발을 위해 차량 주행시험은 필수적이지만 그 비용과 시간이 많이 소요되고, 다양한 차량 주행 조건의 적용이 어렵다. 따라서 차량 주행시험의 비용 및 시간적 문제점을 보완하고, 주행 조건에 따른 다양한 교량응답의 확보할 수 있는 수치 시뮬레이션이 현장실험과 병행되어야한다. 본 연구에서는 교량의 동적특성을 반영하는 수치 시뮬레이션을 수행하여 교량의 응답을 획득하고, 통행 차량의 중량을 산출하는 BWIM 시스템에 적용하여 총중량 및 축중량 추정을 수행하고 정밀해석모델기반 과적단속기술에 대하여 제안하였다.
        4,000원
        3.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 교량 모니터링 시스템의 일부분으로 서해대교에 설치된 교량 하중측정 시스템(BWIM system)으로부터 획득한 신호를 분석하여 통행차량의 정보를 추출하기 위한 알고리즘의 개발과정과 이를 위해 수행한 현장 차량주행시험에 대하여 기술하였다. 개발된 BWIM 시스템은 포장층에 매설하는 축감지기가 없는 형태로, 바닥판과 가로보에 설치된 변형률계로부터 측정한 시간이력 변형률신호만을 이용하였다. 이들 측정신호로부터 추출하고자 하는 차량의 정보는 통과차로, 통과속도, 차 축수 및 총 중량이며, 이들 정보의 추출을 위해 패턴인식기법의 일종인 인공신경망(Aritificial Neural Network, ANN) 기법을 사용하였다. 현장 차량주행시험을 통하여 기지차량 및 미지차량 통행시의 BWIM 응답 데이터를 측정하였으며, 이들 실측데이터를 사용하여 인공신경망의 학습 및 성능검증을 수행하였다. 개발된 기법을 사용하여 추출되는 차량의 정보들은 현재의 교량상태 및 피로수명 평가시 활용될 수 있을 것이며, 향후 설계트럭 하중모델의 개정시 기초자료로도 활용될 수 있을 것으로 기대된다.
        4,000원
        4.
        2015.10 서비스 종료(열람 제한)
        In this study, a novel bridge weigh-in-motion system based on pseudo-static deflection extracted from the measured dynamic displacement while a truck overpasses the bridge is proposed and its feasibility is experimentally verified through a series of driving tests with a heavy duty truck on an operating bridge.
        5.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        A Bridge Navigational Watch Alarm System (hereafter 'BNWAS') is to monitor and detect if an officer of watch(hereafter ‘OOW’) keeps a sharp lookout on the bridge. The careless lookout of an OOW could lead to marine accidents. For this reason on June 5th, 2009, IMO decided that a ship is equipped with a BNWAS. However, an existing BNWAS gives the OOW a lot of inconvenience and stress in its operation. It requires that the OOW should press reset buttons to confirm their alert watch on the bridge at every three to twelve minute. Many OOWs have complained that at some circumstances they cannot focus on their bridge activities including watch-keeping due to a lots of resetting inputs of BNWAS. Accordingly, IMO has allowed the use of a motion sensor as a resetting device. The motion sensor detects the movements of human body on the bridge and subsequently sends reset signals directly to BNWAS automatically. As a result, OOWs can work uninterrupted. However, some of classification societies and flag authorities have a slightly different stance on the use of motion sensor as a resetting method for BNWAS. The reason is that the motion sensor may trigger false reset signals caused by the motion of objects on the bridge, especially a slight movement such as toss and turn of human body which can extend the period of careless watch. As a basic study to minimize the false reset signals, this paper proposes a simple configuration of BNWAS, which consists of only three motion sensors associated with ‘AND’ and ‘OR’ logic gates. Additionally, several considerations are also proposed for the implementation of motion sensors. This study found that the proposed configuration which consists of three motion sensors is better than an existing one by reducing false reset signals caused by a slight movement of human body in one’s sleep. The proposed configuration in this paper filters false reset signals and is simple to be implemented on existing vessels. In addition, it can be easily installed just by a basic electrical knowledge.
        6.
        2014.10 서비스 종료(열람 제한)
        In this study an algorithm estimating total load and axial load was conducted using BWIM(Bridge Weigh-in-Motion) system with precision analysis model. Driving test for running vehicle is necessary but it needs much cost, time, and especially hard to applicate to various driving condition. Thus we need a numerical-simulation method for resolving the cost and time problems of driving test for vehicle, and a way to measure bridge responses reflecting many unpredictable situations. Using a precision analysis model reflecting the dynamic characteristic contributes to increase the accuracy in numerical simulation. In this paper, we conduct a numerical simulation to apply a precision analysis model, which reflects the dynamic characteristic of a bridge using the Bridge Weigh-in-Motion system, and suggested a method of overloaded vehicle enforcement technology using the precision analysis model.
        7.
        2006.03 KCI 등재 서비스 종료(열람 제한)
        교량의 설계에 있어서 정확한 하중의 산정은 교량의 안전성 확보에 가장 핵심적인 사항이며 향후 유지관리 측면에서도 매우 중요하다. 교량구조물에서 차량에 의한 하중효과는 주로 활하중(충격하중 포함) 및 피로하중으로 나타난다. 이들 하중의 정형화를 위해서는 실제 교량상을 주행하는 중차량의 중량 및 통행특성을 정확히 파악하는 것이 중요하다. 이를 위해서 주행중인 차량을 정지시키지 않고 중량을 계측할 수 있는 시스템(Bridge Weigh-In-Motion, BWIM)의 개발이 필요하다. 본 연구에서는 다양한 기능을 갖는 BWIM시스템을 국내실정에 맞게 개발하고 이를 고속도로상의 교량에서 검증하였다.