Concentration-dependent multicolor emission is an unusual yet appealing photoluminescence property of various carbonaceous nanomaterials with interesting potential applications. While carbon dots (CDs) are no exception, the predictability and tuning of the microenvironment of CD to make it suitable for displaying concentration-dependent multicolor emission is far from adequately understood. Through the novel synthesis of bromine-doped CDs (Br-CDs) via controlled hydrothermal pyrolysis, we demonstrate the capacity of the same Br-CD to emit intense red (650 nm) as well as blue fluorescence (410 nm) including intermittent colors as a function of concentration and excitation wavelength. The concentration-dependent morphological transition of the Br-CDs was ascertained using electron microscopy shedding light on their optical evolution in response to concentration changes. The phenomenon is validated as being driven by unique rearrangement and surface functionality modulation, which is essentially linked to the concentration of CD in an ensemble. Notably, the synthesized Br-CDs displayed excellent enzyme-mimicking abilities where oxidase-like activity was assessed using a tetramethylbenzidine (TMB) substrate under visible light (LED, 23W), and peroxidase-like activity was evaluated with TMB and H2O2 over a wide range of pH and temperature. The visible-light-triggered generation of Reactive Oxygen Species (ROS) by Br-CDs proved to be an effective antibacterial agent demonstrating a significant eradication rate against both Gram-positive and Gramnegative bacteria. A captivating and unusual photophysical phenomenon is exhibited by Br-CD, showcasing their versatile applications in nanozymes and antibacterial interventions where emission color directly links to the activity eliminating the necessity of multiple titrations to determine concentration/units/dosage.
The aim of this study is to enhance the flame retardancy by the synergism effect of phosphorus and bromine groups. The flame-retardant polyurethane coatings containing phosphorus and bromine compounds were synthesized. After synthesizing the intermediate products of tetramethylene bis(orthophosphate) (TBOP) and trimethylolpropane/2,3-dibromopropionic acid (2,3-DBP) [2,3-DBP-adduct], the condensation polymerization was performed with four different monomers of two intermediate products, 1,4-butanediol, and adipic acid to obtain four-components copolymer. In the condensation polymerization, the content of phosphorus was fixed to be 2wt%, and the content of 2,3-DBP that provides bromine component was varied to be 10, 20, and 30wt%, and we designated the prepared modified polyesters containing phosphorus and bromine as DTBA-10C, -20C, -30C. Average molecular weight and polydispersity index of the preparation of DTBAs were decreased with increasing 2,3-DBP content because of increase of hydroxyl group that retards reaction. We found that the thermal stability of the prepared DTBAs increased with bromine content at high temperature.