Although canine brucellosis has been known to be an important re-emerging zoonosis, the pathophysiological mechanisms of Brucella canis infection remains clues to be solved. Different culture models, single and co-culture models, were constructed with canine epithelial cells, D17 and macrophage, DH82 to investigate the induction of immune responses in in vivo B. canis infection. Expression of genes related with induction of immune responses, Th1, Th2 and Th17, was compared in the two different models after the bacterial infection. In this study, expression of cytokine genes, IL-1β, IL-5, IL-6, IL-10, IL-23, and TNF-α was quantified in the DH82 at different time points using RT-qPCR in the two different culture systems after the infection. Cytokine genes related with Th1, IL-1β and TNF-α and Th17, IL-6 and IL-23 were expressed with time-dependent manners in the both systems (p<0.05). However, increase of Th2-related cytokine genes expression was not detectable in the both systems by comparison with control. The expression of Th1 and Th17 related cytokine genes was earlier in single cell culture than those in co-culture model (p<0.05). In general, amounts of the expressed genes were shown higher in single cell model than those in co-culture models. This study indicate that Th1 and Th17-associated immune responses are central to B. canis infection in dogs. In addition, it suggests a specific role of epithelial cells in the B. canis infection in vivo, which should resolved in the further study.