본 연구에서는 함평만의 육상기인오염 물질의 유입특성을 파악하고, 물질순환을 정량화하기 위해, Simple box model을 적용하였다. 함평만의 하천 유입 오염부하 특성을 보면, BOD, COD, TOC의 평균 유기물질 오염부하가 각각 79.7 kg-BOD/day, 144.06 kg-COD/day, 93.0 kg-TOC/day를 나타내었다. 하천별 유기물 유입 오염부하량은 손불 방조제>주포교>양만단지 순으로 나타났다. 계절별로는 하계 강우시기인 7월에 높은 부하 특성을 보였다. 영양염류의 평균 유입 오염부하는 각각 20.9 kg-DIN/day, 17.1 kg-DIP/day, 148 kg-TN/day, 37.4 kg-TP/day를 나타내었다. 하천별 영양염 유입부하량은 양만단지>백옥교>주포교 순으로 나타났다. 박스모델을 이용한 함평만 물질수지에서 담수체류시간은 52.4일로 해수교환이 낮은 반 폐쇄성 해역의 특성을 나타내었다. 영양염 물질수지에서 용존 무기질소의 경우 △DIN이 (-)의 탈질상태를 나타내어 유입된 질소보다 광합성에 의한 소비 및 외해 유출이 큰 경향을 보였다. 용존 무기인의 경우 △DIP가 (+)를 나타내어 유기물 분해에 의한 공급, 퇴적물의 용출부하, 하천 유입부하가 식물플랑크톤에 의한 소비 및 외해 유출보다 큰 것으로 나타나 축적되는 경향을 보였다.
PURPOSES : This paper presents a description of the current issues facing road managers regarding the surface-type conversion of lowvolume roads for cost savings.
METHODS: The paper reviews previous works conducted toward this end, acknowledges gaps in the current research, and lays out what information is needed for further studies.
RESULTS : If the cost to maintain an unsurfaced road is less than the cost of maintaining a surfaced road, then there is potential for cost savings for the management agency. However, the problem is bigger than simply maintaining the roads that already exist. If unsurfaced roads prove to be more economical than surfaced roads, then the cost to convert from a surfaced to an unsurfaced roadway, and vice versa, when necessary, must also be examined.
CONCLUSIONS : No other studies have addressed the un-surfacing of a road for cost savings, and it is therefore unknown whether substantial savings can be realistically obtained by converting from a surfaced to an unsurfaced road. To determine whether a conversion policy would be a viable option, additional data and research are needed.
Recently, the breakdown of online banking servers and the leakage of customer information give rise to much concern about the security of information systems in financial and banking companies in Korea. The enforcement of security for information system becomes much more important issue than earlier. However, the security reinforcement of information system is restricted by a budget. In addition, the activities' cost to secure information system from threatening are under uncertain circumstances and should be established by a human decision maker who is basically uncertain and vague. Thus, making the budget for information system is exposed to any extent of the risk for these reasons. First, we introduce brief fuzzy set theory and fuzzy AHP (Analytic Hierarchy Process) methodology. Then, the cost elements that comprise yearly budget are presented and the priorities among the cost elements are calculated by fuzzy AHP. The cost elements that are exposed to risk are evaluated from the both perspectives of the risk impact and risk occurrence possibility which are expressed as linguistic terms. To get information on the risk profiles-pessimistic, most likely, and optimistic-for each cost element, the evaluation is accomplished and the result is presented. At last, the budget ranges-minimum, mode, maximum-for each cost element are estimated with the consideration of the risk profiles.