검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2015.07 서비스 종료(열람 제한)
        A pepper bZIP transcription factor gene, CabZIP2, was isolated from pepper leaves infected with an a virulent strain of Xanthomonas campestris pv. vesicatoria (Xcv). Transient expression analysis of the CabZIP2-GFP fusion protein in Nicotiana benthamiana revealed that the CabZIP2 protein is localized in the cytoplasm as well as the nucleus. The acidic domain in the N-terminal region of CabZIP2 that is fused to the GAL4 DNA-binding domain is required to activate the transcription of reporter genes in yeast. Transcription of CabZIP2 is induced in pepper plants inoculated with virulent or avirulent strains of Xcv. The CabZIP2 gene is also induced by defense-related hormones such as salicylic acid, methyl jasmonate, and ethylene. To elucidate the in vivo function of the CabZIP2 gene in plant defense, virus-induced gene silencing (VIGS) in pepper and overexpression in Arabidopsis were used. CabZIP2-silenced pepper plants were susceptible to infection by the virulent strain of Xcv, which was accompanied by reduced expression of defense-related genes such as CaBPR1 and CaAMP1. CabZIP2 overexpression (OX) in transgenic Arabidopsis plants conferred enhanced resistance to Pseudomonas syringae pv. tomato DC3000. Together, these results suggest that CabZIP2 is involved in bacterial disease resistance.
        2.
        2014.07 서비스 종료(열람 제한)
        Plant bZIP transcription factors play crucial roles in biological processes. In this study, 136 putative bZIP transcription members were identified in Brassica rapa. The bZIP family can be divided into nine groups according to the specific amino acid rich domain in Brassica rapa. To screen the cold stress responsive BrbZIP genes, we evaluated whether the transcription patterns of the BrbZIP genes were enhanced by cold treatment in the inbred lines, Chiifu and Kenshin, by microarray data analysis and qRT-PCR. The expression level of six genes increased significantly in Kenshin, but these genes were unchanged in Chiffu. Additionally, homo- and hetero-dimerization test between selected bZIP proteins indicated the Bra020735 is a key regulator in cold response. These findings suggest that the six genes that encoded proteins containing N-rich regions might be involved in cold stress response. These results presented herein provide valuable information regarding the molecular basis of the bZIP transcription factors and their potential function in regulation growth and development, particularly in cold stress response.