The catalyst materials 0N-Cu-MOF, 1N-Cu-MOF, and 2N-Cu-MOF were successfully synthesized usinga solvothermal method, and using different concentrations of nitrogen-modified Cu organic frameworks (xN-Cu-MOF). Characterizations using X-ray diffraction (XRD), scanning electron microscopy (SEM), fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) surface area analysis showed that 1N-Cu-MOF had the largest SSA and pore size among the three materials synthesized. 1N-Cu-MOF exhibited the largest pore size and specific surface area among the three materials, which had a decisive effect on CO2 reduction. In addition, stability and CO2 reduction reaction (CO2RR) activity were evaluated by linear sweep voltmeter, cyclic voltmeter, electrochemical impedance spectroscopy, and time flow tests. Faradaic efficiency (FE) was determined by product analysis. Among the three catalyst materials, 1N-Cu-MOF showed the best catalytic performance at 50 mA・cm-2 (maximum current density). The charge transfer resistance was 8.23 Ω, the average current density was 19.9 mA・cm-2, and the FE of methane (CH4) production showed a high efficiency of 70.45 % when tested for 12 h at an overpotential of -0.35 V (to-RHE).
Electrochemical reduction of carbon dioxide to valuable chemicals is a promising way of storing renewable energy through electric-to-chemical energy conversion, while its large-scale application is in urgent need of cheap and high-performance catalysts. Herein, we invent a convenient method to synthesize N-doped porous carbon by ammonia etching the pyrolysis carbon of petroleum pitch. We found the ammonia etching treatment not only increase the pyridinic-N content, but also enlarge the specific surface area of the petroleum pitch-based porous carbon. As a cheap and easily available catalyst for carbon dioxide electroreduction, up to 82% of Faradaic efficiency towards carbon monoxide was obtained at − 0.9 V vs the reversible hydrogen electrode in 0.1 M KHCO3. After a long time electrocatalysis of more than 20 h, the Faradaic efficiency of carbon monoxide remains 80%, indicating the porous carbon as made have an ultra-high stability as catalyst for carbon dioxide reduction. Our work provides a new technology to economically prepare efficient electrocatalysts for carbon dioxide reduction.