검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        1998.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We have made semi-analytical studies to investigate the configurations of caustics and the probability distribution of the flux factor K for the binary microlensing including external shears. A parametric equation of critical curve is derived in a 4th order complex polynomial. We present the topological dependencies of the caustics for selected gamma parameters (0, 0.3, 0.6, 1.3, 2.0, and 2.5) and convergence terms (0., 0.4, 0.8, 1.2, 1.6, and 2.0). For the purpose of analyzing the efficiency of High Amplification Event (HAE) on each caustics, we examine the probability distribution of the flux factor by a Monte Carlo method. Changing the separation of the binary system from 0.8 to 1.3 (in normalied unit), we examine the probability distribution of the K-values in various gamma parameters. The relationship between gamma parameters, seperations and their probabilties of the flux factor K have been studied. Our results show that the relatively higher K values (K>1.5) are increased as increasing the separation of the binary system. We therfore conclude that, in the N-body microlensing, the probabilities of higher HAEs are inversely proportional to the star density as well. We also point out that the present research might be used as a preliminary step toward investigating heavy N-body microlensing simulations.
        4,200원
        2.
        1996.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        When we follow the lines of the trajectory of photons which intersect the circle, the circle may suffer some deformation as approaching to the observer. We consider an infinitesimal light bundle suffering gravitational bending. We examine the deformation of the deflected light bundle due to the gravitational lens. The size of the deformation is expressed in terms of the focal length of the gravitational lens.
        4,000원
        3.
        1991.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The mathematical properties of gravitational lens equations are examined in the frame work of gravitational micro-lensing effects. The caustics of the gravitational lens may be defined in terms of "cusp" and "folding" in general. In some cases for overfocussing, however, the critical curves (caustics) have no cusp and no folding. If the observer is in the overfocussed region, he may not see any lensed image.
        4,300원