Copper hexacyanoferrate (Cu-HCF), which is a type of Prussian Blue analogue (PBA), possesses a specific lattice structure that allows it to selectively and effectively adsorb cesium with a high capacity. However, its powdery form presents difficulties in terms of recovery when introduced into aqueous environments, and its dispersion in water has the potential to impede sunlight penetration, possibly affecting aquatic ecosystems. To address this, sponge-type aluminum oxide, referred to as alumina foam (AF), was employed as a supporting material. The synthesis was achieved through a dip-coating method, involving the coating of aluminum oxide foam with copper oxide, followed by a reaction with potassium hexacyanoferrate (KHCF), resulting in the in-situ formation of Cu-HCF. Notably, Copper oxide remained chemically stable, which led to the application of 1, 3, 5-benzenetricarboxylic acid (H3BTC) to facilitate its conversion into Cu-HCF. This was necessary to ensure the proper transformation of copper oxide into Cu-HCF on the AF in the presence of KHCF. The synthesis of Cu-HCF from copper oxide using H3BTC was verified through X-ray diffraction (XRD) analysis. The manufactured adsorbent material, referred to as AF@CuHCF, was characterized using Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These analyses revealed the presence of the characteristic C≡N bond at 2,100 cm-1, confirming the existence of Cu-HCF within the AF@CuHCF, accounting for approximately 3.24% of its composition. AF@CuHCF exhibited a maximum adsorption capacity of 34.74 mg/g and demonstrated selective cesium adsorption even in the presence of competing ions such as Na+, K+, Mg2+, and Ca2+. Consequently, AF@CuHCF effectively validated its capabilities to selectively and efficiently adsorb cesium from Cs-contaminating wastewater.