The charge transfer (CT) excitation energy calculations of H2N-(CH=CH)3-X and the H2N-H.....H-X structures with the various electron acceptors (-X) were performed with comparing the accuracy of various calculation methods, such as B3LYP, long-range corrected (LC)-BLYP, and EOM-CCSD. Both intra-molecular and inter-molecular systems showed a tendency for CT excitation energy to decrease as the electronic accepting property increases, and LC-BLYP showed the best accuracy in both inter- and intra-molecular CT excitation energy. In this study, it was confirmed that unexpectedly larger range separation parameter(μ) values of LC-BLYP showed better results of CT excitation energy.
The transformation of the liquid crystal complex made by binding of anionic surfactant, sodium dodecyl sulfate (SDS), into high charge density cationic polymer, the homopolymer of diallyldimethylammonium chloride (PDADMAC) was induced by adding of nonionic surfactants and investigated by means of microscopy and FE.SEM. Among nonionic surfactants in this experiments polyethylene glycol (3 mol) ether of lauryl alcohol (laureth-3) made variation in the complex. The laureth-3 transformed the complex into spherulite vesicle with the size of ca.100μm. This change increased the viscosity and the turbidity of the solution phase separated originally. Microscope showed that they are spherulite particles and polarized microscope suggested they are multi.lamellar liquid crystals. FE-SEM also proved that explicitly.
Polyelectrolyte titration, which was called colloid titration is based on the stoichiometric reaction between oppositely charged polyelectrolytes. This can be used, for instance, to determine the charge density of a cationic polyelectrolyte, using an anionic polyelectrolyte of known charge density, such as potassium polyvinyl sulfate (PPVS). The technique requires a suitable method of end-point detection and there are several possibilities. In this work, two methods have been investigated: visual titrimetry based on the color change of a cationic dye (o-toluidine blue, o-Tb) and spectrophotometry based on the absorbance change corresponding to the color change of the same dye. These have been applied to several cationic polyelectrolytes with different charge density and molecular weight. In all cases, the cationic charge was due to quaternary nitrogen groups. In the case of cationic dye, it was shown that the sharpness depends on the charge density of cationic polyelectrolyte. With the polyelectrolytes of lower charge density, the binding to PPVS is weaker and binding of the dye to PPVS can occur before all of the polyelectrolyte charge has been neutralized. However, by carrying out titrations at several polyelectrolyte concentrations, good linear relationships were found, from which reliable charge density values could be derived. Effects of pH and ionic strength were also briefly investigated. For cationic polyelectrolytes (copolymers of acrylamide and dimethylaminoethyl acrylate), there was some loss of charge at higher pH values, probably as a result of hydrolysis. Increasing ionic strength causes a less distinct color change of o-Tb, as a result of weaker electrostatic interactions.
충북 영동군 동창광산에서 산출되는 일라이트(illite)광선의 표면화학특성을 전위차 적정 실험과 FITEQL3.2 프로그램을 이용하여 연구하였다. 정량 Xtjs 회절 분석에 의한 일라이트 광석의 광물조석은 석영 46.6% 일라이트 41.6% 카올리나이트(kaolinite) 11.8%이며 N2BET 방법에 의하여 구한 비표면적은 6.52 m2g이다. 전위차 적정 실험결과를 그란(Gran)법을 적용하여 구한 일라이트광석의 영전하점(pHpznpc )은 pH 3.9 총표면 자리 밀도는 21.24 sites/nm2이다. 표면 복합체 모델중 일정 용량 모델을 적용해 일라이트 광석의 표변 특성에 알맞는 모델을 찾아보았다. 일라이트 광석의 표면을 사면체 자리와 팔면체 자리로 나누어 설정한 2sites-3pK as 모델은 변수값이 수렴되지않았으므로 부적절하다고 판단된다. 일라이트 광석의 표면을 하나의 균질한 흡착표면으로 가정해서 설정한 1 site -1 Ka 와 1 site -2 pKa s 모델 사이에는 뚜렷한 차이는 없지만, 1 site -1 pKa 모델의 WSOS/DF 값이 17, 1 site - 2 pKas 모델은 26으로서 앞 모델이 보다 적절하다. 이 결과는 일라이트 광석 표면에서 수소의 해리와 첨가 반응 중 첨가 반응을 무시하여도 표면반응을 설명하는 데 큰 무리가 없음을 시사한다. 가장 적절하다고 판단되는 1 site -1 pKa 모델의 pKa 값은 4.17, specific capacitance는 6F/m2 표면 자리 농도는 1.15×10-3 mol/L 이다.