This study was carried out to compare the DMY (dry matter yield) of IRG (Italian ryegrass) in the southern coastal regions of Korea due to seasonal climate scenarios such as the Kaul-Changma (late monsoon) in autumn, extreme winter cold, and drought in the next spring. The IRG data (n = 203) were collected from various Reports for Collaborative Research Program to Develop New Cultivars of Summer Crops in Jeju, 203 Namwon, and Yeungam from the Rural Development Administration (1993 – 2013). In order to define the seasonal climate scenarios, climate variables including temperature, humidity, wind, sunshine were used by collected from the Korean Meteorological Administration. The discriminant analysis based on 5% significance level was performed to distinguish normal and abnormal climate scenarios. Furthermore, the DMY comparison was simulated based on the information of sample distribution of IRG. As a result, in the southern coastal regions, only the impact of next spring drought on DMY of IRG was critical. Although the severe winter cold was clearly classified from the normal, there was no difference in DMY. Thus, the DMY comparison was simulated only for the next spring drought. Under the yield comparison simulation, DMY (kg/ha) in the normal and drought was 14,743.83 and 12,707.97 respectively. It implies that the expected damage caused by the spring drought was about 2,000 kg/ha. Furthermore, the predicted DMY of spring drought was wider and slower than that of normal, indicating on high variability. This study is meaningful in confirming the predictive DMY damage and its possibility by spring drought for IRG via statistical simulation considering seasonal climate scenarios.
Spatial and temporal variations of Yellow Dust source area and desertification in dryland regions of the Northeast Asia were evaluated based on extensive literature review on field and modeling evidences. In overall, Yellow Dust occurrence decreased since 1960s but it increased again in Mongolia and northeastern China after 2000s, the latter of which indicates eastward encroachment of major Yellow Dust source area for the last decade. The phenomena seem to coincide well with recent desertification of Mongolia, Inner Mongolia, and Manchuria. Vegetation cover is evaluated as an important biophysical variable for controlling both dust occurrence and desertification, which considerably depends on both precipitation and livestock pastoralism. Hence, dryland sustainability should consider dynamic balancing between vegetation productivity and livestock utilization under varying climate and socio-economic situations, which requires socio-ecological perspective on sustainable dryland management.
우리나라의 농업기후자원량의 분포와 변동을 파악하여 벼의 안전재배기준을 설정하는 데 이용하고자 수집가능한 전국 155개소의 농업기상자료를 전산화하여 농업지대의 기후구분을 시도한 결과 다음과 같다. 1. 4~5월의 평균기온은 10~16℃ 의 분포를 보이며 유효온도 15℃ 이상인 작물기간은 태백산맥의 고냉지대가 100~130일 이며, 남부해안지대에서는 180일로 50일 이상 차이가 있다. 2. 이앙기에 한발피해가 우려되는 지역은 4~6월 한발지수(∑E/∑R)가 1.2이상이 되는 영남분지 및 동해안지대이다. 3. 7~9월의 평균기온은 18℃ 이하에서 25℃ 까지 7℃ 이상 차이가 있으며 태백산맥산간지와 소백산간지를 주향하는 22℃ 이하 지역이 냉해우려지이며 표준편차 2.8℃ 이상인 지역은 내륙성을 보인다. 4. 동해안지대와 태백산간지대는 영서내륙지대보다 특히 일조시수가 짧다. 5. 기후생산력지수는 태백고냉지대가 0.7~0.8로 가장 낮으며 소백산간지대는 0.9~0.95이다. 기후생산지수가 가장 높은 지대는 호남의 차영남부 평야지이다. 6. 기후자원량의 분포와 변동 및 기후지수를 중첩하여 종합적으로 평가하면 태백고냉지대 등 19개 농업지대로 기후구분된다.