결과 내 재검색





        검색결과 47

        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to confirm the importance ratio of climate and management variables on production of orchardgrass in Korea (1982―2014). For the climate, the mean temperature in January (MTJ, ℃), lowest temperature in January (LTJ, ℃), growing days 0 to 5 (GD 1, day), growing days 5 to 25 (GD 2, day), Summer depression days (SSD, day), rainfall days (RD, day), accumulated rainfall (AR, mm), and sunshine duration (SD, hr) were considered. For the management, the establishment period (EP, 0―6 years) and number of cutting (NC, 2nd―5th) were measured. The importance ratio on production of orchardgrass was estimated using the neural network model with the perceptron method. It was performed by SPSS 26.0 (IBM Corp., Chicago). As a result, EP was the most important variable (100%), followed by RD (82.0%), AR (79.1%), NC (69.2%), LTJ (66.2%), GD 2 (63.3%), GD 1 (61.6%), SD (58.1%), SSD (50.8%) and MTJ (41.8%). It implies that EP, RD, AR, and NC were more important than others. Since the annual rainfall in Korea is exceed the required amount for the growth and development of orchardgrass, the damage caused by heavy rainfall exceeding the appropriate level could be reduced through drainage management. It means that, when cultivating orchardgrass, factors that can be controlled were relatively important. Although it is difficult to interpret the specific effect of climates on production due to neural networking modeling, in the future, this study is expected to be useful in production prediction and damage estimation by climate change by selecting major factors.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to analyze causality of climatic factors that affecting the yield of whole crop barley (WCB) by constructing a network within the natural ecosystem via the structural equation model. The WCB dataset (n=316) consisted of data on the forage information and climatic information. The forage information was collected from numerous experimental reports from New Cultivars of Winter Crops (1993-2012) and included details of fresh and dry matter yield, and the year and location of cultivation. The climatic information included details of the daily mean temperature, precipitation, and sunshine duration from the weather information system of the Korea Meteorological Administration. The variables were growing days, accumulated temperature, precipitation, and sunshine duration in the season for the period of seeding to harvesting. The data was collected over 3 consecutive seasons—autumn, winter, and the following spring. We created a causality network depicting the effect of climatic factors on production by structural equation modeling. The results highlight: (i) the differences in the longitudinal effects between autumn and next spring, (ii) the factors that directly affect WCB production, and (iii) the indirect effects by certain factors, via two or more paths. For instance, the indirect effect of precipitation on WCB production in the following spring season via its effect on temperature was remarkable. Based on absolute values, the importance of WCB production in decreasing order was: the following spring temperature (0.45), autumn temperature (0.35), wintering (-0.16), and following spring precipitation (0.04). Therefore, we conclude that other climatic factors indirectly affect production through the final pathway, temperature and growing days in the next spring, in the climate-production network for WCB including temperature, growing days, precipitation and sunshine duration.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 기계학습을 통한 수량예측모델을 이용하여 이상기상에 따른 WCM의 DMY 피해량을 산출하기 위한 목적으로 수행하였다. 수량예측모델은 WCM 데이터 및 기상 데이터를 수집 후 가공하여 8가지 기계학습을 통해 제작하였으며 실험지역은 경기도로 선정하였다. 수량예측모델은 기계학습 기법 중 정확성이 가장 높은 DeepCrossing (R2=0.5442, RMSE=0.1769) 기법을 통해 제작하였다. 피해량은 정상기상 및 이상기상의 DMY 예측값 간 차이로 산출하였다. 정상기상에서 WCM의 DMY 예측값은 지역에 따라 차이가 있으나 15,003~17,517 kg/ha 범위로 나타났다. 이상기온, 이상강수량 및 이상풍속에서 WCM의 DMY 예측 값은 지역 및 각 이상기상 수준에 따라 차이가 있었으며 각각 14,947~17,571 kg/ha, 14,986~17,525 kg/ha 및 14,920~17,557 kg/ha 범위로 나타났다. 이상기온, 이상강수량 및 이상풍속에서 WCM의 피해량은 각각 –68~89 kg/ha, -17~17 kg/ha 및 – 112~121 kg/ha 범위로 피해로 판단할 수 없는 수준이었다. WCM의 정확한 피해량을 산출하기 위해서는 수량예측모델에 이용하는 이상기상 데이터 수의 증가가 필요하다.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 객토를 한 간척지에서 석고시용 수준이 알팔파의 수량과 사료성분에 미치는 영향을 알아보고자 수행하였다. 실험장소는 간척한지 17~33년 경과된 석문간척지로서 약 70 cm 정도 객토한 토양이었다. 객토에 사용한 흙은 섬토양의 제염을 하지 않은 것 이었다. 처리는 석고를 시용하지 않은 0 ton/ha 구(G0), 석 고를 2 ton/ha(G2) 및 4 ton/ha(G4) 시용한 구로 하였다. 수확은 알팔파가 개화초기(개화 10%)에 도달할 때 1차 수확하였으며 이 후 수확은 약 35일 간격으로 수확을 하였다. 알팔파의 건물수량은 1차 년도는 G2가 G0와 G4보다 유의적으로 높았으며 2차 년도는 처리간 유의적인 차이는 없었으나 G2가 G0와 G4보다 높은 경향을 보였다. G2에서 알팔파의 건물수량이 높은 이유는 토양의 pH 및 EC가 각각 재배가능 및 재배적합 수준이었고 피복도 및 알팔파 식생비율도 높은 것에 기인하였다. 1차 및 2차 년도 모두 석고 처리 간 CP, NDF 및 ADF 함량 및 RFV는 차이가 없었다. 한편 1차 및 2차 년도의 연구결과를 통해서 알팔파 건물수량에 부정적인 영향을 주는 요인은 봄의 가뭄과 여름의 집중된 강수로 나타났다. 이상으로부터 객토 간척지에서 석고 처리는 알팔파의 건물수량을 높이는데 효과적인 것으로 판단되며 2 ton/ha이 적정 수준인 것으로 사료된다.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to determine the trend in dry matter yield (DMY) of a new sorghum-sudangrass hybrid (SSH) in the central inland regions of Korea. The metadata (n=388) were collected from various reports of the experiments examining the adaptability of this new variety conducted by the Rural Development Administration (1988–2013). To determine the trend, the parameters of autoregressive (AR) and moving average (MA) were estimated from correlogram of Autocorrelation function (ACF) and partial ACF (PACF) using time series modeling. The results showed that the trend increased slightly year by year. Furthermore, ARIMA (1, 1, 0) was found to be the optimal model to describe the historical trend. This means that the trend in the DMY of the SSH was associated with changes over the past two years but not with changes from three years ago. Although climatic variables, such as temperature, precipitation, and sunshine were also considered as environmental factors for the annual trends, no clear association was observed between DMY and climates. Therefore, more precise processing and detailed definition of climate considering specific growth stages are required to validate this association. In particular, research on the impact of heavy rainfall and typhoons, which are expected to cause damage in the short term, on DMY trends is ongoing, and the model confirmed in this study is expected to play an important role in studying this aspect. Furthermore, we plan to add the environmental factors such as soil and cultivation management as well as climate to our future studies.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to access the effect of climate and soil factors on alfalfa dry matter yield (DMY) by the contribution through constructing the yield prediction model in a general linear model considering climate and soil physical variables. The processes of constructing the yield prediction model for alfalfa was performed in sequence of data collection of alfalfa yield, meteorological and soil, preparation, statistical analysis, and model construction. The alfalfa yield prediction model used a multiple regression analysis to select the climate variables which are quantitative data and a general linear model considering the selected climate variables and soil physical variables which are qualitative data. As a result, the growth degree days(GDD) and growing days(GD), and the clay content(CC) were selected as the climate and soil physical variables that affect alfalfa DMY, respectively. The contributions of climate and soil factors affecting alfalfa DMY were 32% (GDD, 21%, GD 11%) and 63%, respectively. Therefore, this study indicates that the soil factor more contributes to alfalfa DMY than climate factor. However, for examming the correct contribution, the factors such as other climate and soil factors, and the cultivation technology factors which were not treated in this study should be considered as a factor in the model for future study.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to discuss the optimal seeding and harvesting dates with growing degree days(GDD) via meta-data of whole crop maize(WCM). The raw data (n=3,152) contains cultivation year, cultivars, location, seeding and harvesting dates collected from various reports such as thesis, science journals and research reports (1982-2012). The processing was: recording, screening and modification of errors; Then, the final dataset (n=121) consists of seeding cases (n=29), and harvesting cases (n=92) which were used to detect the optimum. In addition, the optimal periods considering tolerance range and GDD also were estimated. As a result, the optimum seeding and harvesting periods were 14th April ~ 3rd May and 15th August ~ 4th September, respectively; where, their GDDs were 23.7~99.6℃ and 1,328.7~ 1,602.1℃, respectively. These GDDs could be used as a judge standard for selecting the seeding and harvesting dates.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Yield prediction model for mixed pasture was developed with a shortage that the relationship between dry matter yield (DMY) and days of summer depression (DSD) was not properly reflected in the model in the previous research. Therefore, this study was designed to eliminate the data of the regions with distinctly different climatic conditions and then investigate their relationships DMY and DSD using the data in each region separately of regions with distinct climatic characteristics and classify the data based on regions for further analysis based on the previous mixed pasture prediction model. The data set used in the research kept 582 data points from 11 regions and 41 mixed pasture types. The relationship between DMY and DSD in each region were analyzed through scatter plot, correlation analysis and multiple regression analysis in each region separately. In the statistical analysis, DMY was taken as the response variable and 5 climatic variables including DSD were taken as explanatory variables. The results of scatter plot showed that negative correlations between DMY and DSD were observed in 7 out of 9 regions. Therefore, it was confirmed that analyzing the relationship between DMY and DSD based on each region is necessary and 5 regions were selected (Hwaseong, Suwon, Daejeon, Siheung and Gwangju) since the data size in these regions is large enough to perform the further statistical analysis based on large sample approximation theory. Correlation analysis showed that negative correlations were found between DMY and DSD in 3 (Hwaseong, Suwon and Siheung) out of the 5 regions, meanwhile the negative relationship in Hwaseong was confirmed through multiple regression analysis. Therefore, it was concluded that the interpretability of the yield prediction model for mixed pasture could be improved based on constructing the models using the data from each region separately instead of using the pooled data from different regions.
        1 2 3