This study evaluated genetic parameters of direct and maternal effects for calving ease in Hanwoo. A total of 2,102 records for calving ease were collected from 2018 to 2020 from the Hanwoo Genetic Improvement Center in Korea. The calving ease score was rated from 1 to 4 (1=unassisted delivery, 2=assisted easy calving, 3=assisted difficult calving, 4=mechanical or caesarean section) as categorical data, and the data were converted using a truncated normal distribution for linear model analysis. To evaluate the genetic parameters, the birth year-season of calving, the sex of the calf, parity, and the age of the dam at calving were considered as fixed effects, and genetic and maternal effects were considered random effects. The genetic parameters were evaluated using the program BLUPF90. The calving ease scores for male calves, first parity cows, and currently calving cows were much higher than for females, later parities, and past calving cows. The direct genetic variance (0.0164) was higher than the maternal genetic variance (0.0018), and the estimated heritabilities of the direct and maternal effects were 0.055 and 0.006, respectively. The parameters determined here should help with the genetic evaluation of calving ease in Hanwoo.
Diets different in crude protein (CP) and undegraded intake protein (UIP) contents were offered to sheep in a metabolism study to describe their effects on nutrient digestibility and nitrogen (N) metabolism. Six Corriedale sheep (body weight=56.2±2.3 kg) were divided in random within a Latin square design (replicated) to 1 of 3 diets: 1) a low-CP diet (LP; 12.2% CP with 35.1% UIP), 2) high CP with low UIP diet (HPLU; 14.9% CP with 33.7% UIP), and 3) high CP with high UIP diet (HPHU; 15.5% CP with 45.8% UIP). High-protein dried distillers grain and soybean meal were the main CP sources for the adjustment of UIP:DIP in the diets. No significant differences were found in feed consumption and nutrient digestibility; however, a greater proportion of CP was digested in sheep fed the HPLU diet (69.4%; P=0.04). Although N intake was greater in sheep receiving HPLU and HPHU diets, loss of N through fecal or urinary route was not different among sheep, which resulted in the highest (12.7 g/d) and lowest N retention (7.40 g/d) in HPHU- and LP-fed sheep, respectively. In conclusion, although CP or UIP content had marginal effects on feed consumption and whole-tract digestibility of the majority of nutrients, with the increased CP and UIP levels in the diet, the efficiency of N utilization was improved with regard to increased N retention with minimal differences in N excretion, which is important from an economic and environmental standpoint.
This study aimed to determine the trend in dry matter yield (DMY) of a new sorghum-sudangrass hybrid (SSH) in the central inland regions of Korea. The metadata (n=388) were collected from various reports of the experiments examining the adaptability of this new variety conducted by the Rural Development Administration (1988–2013). To determine the trend, the parameters of autoregressive (AR) and moving average (MA) were estimated from correlogram of Autocorrelation function (ACF) and partial ACF (PACF) using time series modeling. The results showed that the trend increased slightly year by year. Furthermore, ARIMA (1, 1, 0) was found to be the optimal model to describe the historical trend. This means that the trend in the DMY of the SSH was associated with changes over the past two years but not with changes from three years ago. Although climatic variables, such as temperature, precipitation, and sunshine were also considered as environmental factors for the annual trends, no clear association was observed between DMY and climates. Therefore, more precise processing and detailed definition of climate considering specific growth stages are required to validate this association. In particular, research on the impact of heavy rainfall and typhoons, which are expected to cause damage in the short term, on DMY trends is ongoing, and the model confirmed in this study is expected to play an important role in studying this aspect. Furthermore, we plan to add the environmental factors such as soil and cultivation management as well as climate to our future studies.
This study was conducted to assess the effect of acidification of pig slurry on nitrogen (N) mineralization and its environmental impacts during pig slurry fermentation. Different inorganic and organic acids were used to acidify pig slurry. Four treatments including non-acidified pig slurry (control), pig slurry acidified with sulfuric acid, lactic acid, and citric acid were allocated with three replications. The total N content in the acidified pig slurry was higher than non-acidified pig slurry after fermentation. Acidification tended to increase total N content in pig slurry. Ammonium N (NH4 +-N) released from pig slurry was obviously increased at 7 days after incubation, representing 61.4%, 36.8%, and 37.4% increase in the acidified pig slurry with sulfuric acid, lactic acid, and citric acid, respectively. Nitrate N (NO3 --N) in the acidified pig slurry with sulfuric acid was the highest throughout the experiment period, but non-significant effect of organic acid. A large portion of ammonia (NH3) emission occurred within 10 days, corresponding to more than 55% of total NH3 emission. Total cumulative NH3 emission during the experimental period was lower 91% (2.9 mg N kg-1), 78% (7.3 mg N kg-1), and 81% (6.2 mg N kg-1) in the acidified pig slurry with sulfuric acid, lactic acid, and citric acid, respectively, than non-acidified pig slurry (32.7 mg N kg-1). These results suggest that acidification of pig slurry (particularly with sulfuric acid) can be faced as a good strategy to reduce NH3 emission without depressing the mineralization process.